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0 Introduction
Rings, groups, �elds, and some other topics.

Professor: David Stapleton.

Textbook: Abstract Algebra: An Introduction by Hungerford.
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1 Arithmetic in ℤ

1.1 The Division Algorithm
ℤ = {0, ±1, ±2,…} is the set of integers. In this course, we will deal with a few results concerning
division in ℤ. The �rst is:

Theorem 1.1.1 (Division algorithm). Let n, d ∈ ℤ with d > 0. Then there exist
unique q, r such that

n = qd + r and 0 ≤ r < d.

Proof. We will �rst show the existence of q, r . De�ne S ∶= {n − dq|q ∈ ℤ, n − dq ≥ 0}. We
claim that S has a minimal element. To show this, recall the well-ordering axiom:

Every non-empty set of non-negative integers contains a smallest element.

By de�nition, S is a set of non-negative integers, and clearly it is non-empty since n = n−0d ∈ S.
So S has a minimal element; denote it r .

We claim that r < d . Suppose toward a contradiction that r ≥ d . Then

0 ≤ r − d = n − d(q + 1) ∈ S.

But r − d < r , contradicting the minimality of r . So r < d . This r , along with the q that yields
it, satis�es

n = qd + r and 0 ≤ r < d,

as desired.

Now we will show that q, r are unique. Take n, d ∈ ℤ. Let n = qd+r = q
′
d+r

′ for q, q′, r , r ′ ∈ ℤ

and 0 ≤ r , r
′
< d . We can write

qd − q
′
d + r − r

′
= 0

⇒ −d(q − q
′
) = r − r

′
. (∗)

So d |(r − r ′). Now, using the de�nition of r , r ′, we have

0 ≤ r < d

0 ≤ r
′
< d.

Multiplying the second inequality by -1 gives −d < −r
′
≤ 0. We add this to the �rst inequality

to obtain −d < r − r
′
< d . But since d |(r − r ′), we conclude r − r ′ = 0 ⇒ r = r

′.

Now we substitute (∗) into −d < r − r
′
< d , which gives

−d < −d(q − q
′
) < d

−1 < q − q
′
< 1.

Since q − q′ is an integer, we also conclude q − q′ = 0 ⇒ q = q
′. Thus, q and r are unique. This

completes the proof.

The Division Algorithm implies the following terminology.

De�nition 1.1.1. Take a, b ∈ ℤ. a divides b if b = aq for some q ∈ ℤ. We can
write this as a|b.
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1.2 The Euclidean Algorithm
De�nition 1.2.1. Let a, b ∈ ℤ. The greatest common divisor or GCD of a and
b, denoted (a, b), is the largest integer d such that d |a and d |b.

The Euclidean algorithm is an e�cient way to compute the GCD of two integers.

Theorem 1.2.1 (Euclidean algorithm). For a, b ∈ ℤ, given the following sequence

a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

⋮

where each equation is an application of the division algorithm, the �nal nonzero
remainder is (a, b).

We will show the following result to provide intuition into the correctness of the Euclidean
algorithm.

Claim. Apply the division algorithm on a, b ∈ ℤ to obtain a = bq + r . Then
(a, b) = (b, r).

Proof. If d is a common divisor of a and b, then a = dn and b = dm for m, n ∈ ℤ. Then
r = dn − dmq, so d |r . So d is also a common divisor of b and r . This implies (a, b) ≤ (b, r) since
(a, b) is also a common divisor of b and r , but it need not be the largest.

Conversely, if d is a common divisor of b and r , then we can simply factor it out of the RHS of
the division algorithm to obtain an expression for a as the product of d and an integer. So d |a,
and by an analogous argument as above, (b, r) ≤ (a, b).

So (a, b) = (b, r).

This suggests a general strategy for simplifying the computation of (a, b): �nd the GCD of b
and the remainder from division of a by b, and repeat.

Example 1.2.1. To �nd (528, 148), we can perform the following:

528 = 148 ⋅ 3 + 80

148 = 80 ⋅ 1 + 68

80 = 68 ⋅ 1 + 12

68 = 12 ⋅ 5 + 8

12 = 8 ⋅ 1 + 4

8 = 4 ⋅ 2 + 0.

The last nonzero remainder is 4, so (528, 148) = 4.

Theorem 1.2.2 (Bezout’s identity). For a, b ∈ ℤ such that a and b are not both
zero, there exist r , s ∈ ℤ such that ra + sb = (a, b). r , s are sometimes called Bezout
coe�cients.
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Proof. Consider S ∶= {am + bn|m, n ∈ ℤ}, the set of all linear combinations of a and b. Since
a
2
+ b

2
∈ S and at least one of a and b is nonzero, S contains a non-empty subset of positive

integers. Therefore, it has a minimal positive element (call it t) by the Well-Ordering Axiom.
We claim that (a, b) = t .

Since t ∈ S, we can write t = am + bn for m, n ∈ ℤ. To prove our claim, we must �rst show t |a

and t |b. Applying the division algorithm on a and t , we obtain a = qt + r , where q and r have
the usual properties. Then

r = a − qt

r = a − q(am + bn)

r = a(1 − qm) + b(−qn)

So r is a linear combination of a and b; hence, r ∈ S. But since r < t and t is the minimal
positive element of S, it must be that r ≤ 0. By de�nition, however, r ≥ 0. So r = 0 and t |a. We
can show t |b analogously.

Now we will show t is the greatest common factor of a and b. Take c ∈ ℤ such that c|a and c|b.
Then a = cx and b = cy for x, y ∈ ℤ. We can thus write t = cxm + cyn = c(xm + yn), which
gives c|t . So c ≤ |t |, implying c ≤ t since t > 0. This completes the proof.

Remark. This proof shows a result even stronger than the original statement of
the theorem. Not only is (a, b) a linear combination of a and b, but it is also the
smallest linear combination.

It is a common problem, particularly in cryptography, to �nd the Bezout coe�cients given a, b.
We can achieve this by "working backward" using the Euclidean algorithm.

Example 1.2.2. We want to �nd m, n such that 582m + 148n = (528, 148).

The �rst step is to perform the Euclidean algorithm, as in Example 1.2.1. Recall
the second-to-last equation: 12 = 8 ⋅ 1 + 4. Since (528, 148) = 4, we can isolate 4 to
obtain 12 − 8 ⋅ 1 = 4.

Now recall the equation above: 68 = 12 ⋅ 5 + 8. We isolate 8 to obtain 68 − 12 ⋅ 5 = 8

and substitute it into the previous equation: 12 − (68 − 12 ⋅ 5) ⋅ 1 = 12 ⋅ 6 − 68 = 4.

What’s the motivation for this substitution? Recall that

(582, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 4).

In each step of the Euclidean algorithm, we reduce (582, 148) into GCD expressions
containing increasingly smaller numbers.

In this example, we work our way upward, expressing 4 in terms of increasingly
larger numbers and their Bezout coe�cients. We started with 12−8 ⋅1 = 4, which is
in fact (12, 8) = 4 expressed in terms of its Bezout coe�cients. When we substitute
for 8, we obtain a new expression in terms of 68 and 12 of the same form.

The idea is to work our way up the Euclidean algorithm chain of equations until
we get to an expression in terms of 528 and 148. Three substitutions later, we
arrive at 528 ⋅ (−7) + 148 ⋅ 25 = 4.
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1.3 The Fundamental Theorem of Arithmetic
De�nition 1.3.1. Take nonzero p ∈ ℤ such that p ≠ ±1. We say p is prime if its
only divisors are ±1 and ±p.

Theorem 1.3.1 (The Fundamental Theorem of Arithmetic). A nonzero n ∈ ℤ,
where n ≠ ±1, can be written as a product of primes. If p1⋯ ps = q1⋯ qt are two
prime factorizations of n, then s = t and the {qj} can be reordered such that qi = ±pi

for all i.

To prove this, we start by showing the following result about primes:

Theorem 1.3.2. For nonzero a ∈ ℤ such that a ≠ ±1, p is prime i� it has the
following property:

if p|bc, then p|b or p|c.

Proof. Suppose p is prime and divides bc. Then consider (p, b). By de�nition, (p, b)|p, but since
p is prime, we have either (p, b) = 1 or (p, b) = p (negative if p is negative). In the second case,
p|b. For the �rst case, we claim that (p, b) = 1 ⇒ p|c.

To show this, we apply Bezout given that (p, b) = 1 to get pu + bv = 1 for u, v ∈ ℤ. Multiplying
both sides by c, we get cpu + cbv = c. But since p|bc, we can write bc = pk for k ∈ ℤ.

Now we substitute this expression of bc into the equation found previously, which gives
cpu + pkv = p(cu + kv) = c. So p|c, as desired.

Therefore, either p|b or p|c, completing the proof.

It is fairly straightforward to generalize the above result:

Corollary 1.3.1. If p ∈ ℤ is prime and p|(a1⋯ an), where ai ∈ ℤ for all i, then p|ai
for some i.

Proof. We induce on n. In the base case n = 1, we trivially have p|a1 ⇒ p|a1. Now suppose the
result holds for n = k. We wish to show that if p is prime and p|(a1⋯ ak+1), then p|ai for some
i. Suppose the antecedent is true. By Theorem 1.3.1, we have that either p|a1⋯ ak or p|ak+1.

In the second case, we are done. In the �rst, the result follows from the inductive hypothesis.

Now we can start showing the components of FTA. First, we show the existence of prime
factorizations.

Lemma 1.3.1. Every n ∈ ℤ except 0, ±1 is a product of primes.

Proof. We need only show this for positive n because we can obtain a prime factorization of
−n by negating any prime in the factorization of n.

Let S be the set of positive n that do not have prime factorizations, and denote its smallest
element by m. Note that m is not prime, since otherwise it would have the prime factorization
m. So it has positive divisors other than 1 and itself.
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Let m = ab where 1 < a, b < m. Then a, b ∉ S because m is minimal. This implies that
a and b have prime factorizations; that is, a = p1⋯ pr and b = q1⋯ qs . We can then write
m = p1⋯ p2q1⋯ qs , a prime factorization of m. So m ∉ S and m ∈ S, a contradiction. Therefore,
S is empty.

Lemma 1.3.2. Prime factorizations are unique up to order and sign.

Proof. Suppose that n has two prime factorizations: p1⋯ ps and q1⋯ qt . Then, because p1|n,
we know p1 divides one of the qi by Corollary 1.3.1. Since qi is prime and p1 ≠ ±1, p1 = ±qi .

Now let n be the smallest positive integer with two prime factorizations that di�er in more
than order and sign: p1 ⋅ ps and qr ⋅ qt . We can use the above property to write

n/p1 = p2⋯ ps = q1⋯ q̂i ⋯ qt .

We renumber the {qi} to obtain q2⋯ qt . Since n/p1 < n, there exists a reordering of {qi} such
that qi = ±pi for all i > 1. But we have previously shown this property for i = 1. In sum, this
implies that there exists a reordering of the original prime factorizations such that qi = ±pi for
all i ≥ 1.

This contradicts the assumption on n, completing the proof.

We �nally return to the titular theorem of this section.

Theorem 1.3.1 (The Fundamental Theorem of Arithmetic). A nonzero n ∈ ℤ,
where n ≠ ±1, can be written as a product of primes. If p1⋯ ps = q1⋯ qt are two
prime factorizations of n, then s = t and the {qj} can be reordered such that qi = ±pi

for all i.

Proof. The �rst sentence is given by Lemma 1.3.3, and the second by Lemma 1.3.4.

Alright, time for an example using the FTA.

Example 1.3.1. Consider positive a, b ∈ ℤ. Write

a = p
a1

1
⋯ p

an

n
and b = q

b1

1
⋯ q

bn

n
,

where a1,… , an, b1… , bn ≥ 0 and p1,… , pn > 0 are primes. We want to show that if
d is a common divisor of a, b, then d |(a, b).

The common divisors of a and b are of the form p
k1

1
⋯ p

kn

n
, where ki ≤ min(ai , bi)

is a positive integer. On the other hand, (a, b) is simply pmin(a1,b1)

1
⋯ p

min(an ,bn)

n
. We

write
p
k1

1
⋯ p

kn

n
(p

min(a1,b1)−k1

1
⋯ p

min(an ,bn)−kn

n
) = p

min(a1,b1)

1
⋯ p

min(an ,bn)

n
.

By the de�nition of ki , p
min(ai ,bi )−ki

i
∈ ℤ. Thus the second term on the LHS is an

integer, implying that d |(a, b).
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2 Congruences and Modular Arithmetic

2.1 Congruence in ℤ

De�nition 2.1.1. Take a nonzero n ∈ ℤ. Then a, b ∈ ℤ are congruent modulo
(or “mod”) n if n|(a − b). In other words,

n|(a − b) ⇔ a, b congruent mod n ⇔ a ≡ b (mod n).

First, we will show some fairly routine properties of congruence modulo n that will become
helpful shortly.

Claim. Congruence modulo n is an equivalence relation.

Proof. We will show that congruence modulo n is re�exive, symmetric, and transitive.

Re�exive: Trivially, a ≡ a (mod n).

Symmetric: a ≡ b (mod n) ⇒ n|(a − b). Then kn = a − b for k ∈ ℤ and thus

−kn = b − a ⇒ n|(b − a) ⇒ a ≡ b (mod n).

Transitive: Suppose a ≡ b (mod n) and b ≡ c (mod n). Then nk = a − b and nj = b − c for
k, j ∈ ℤ. Adding the equations, we get

n(k + j) = a − c ⇒ n|(a − c) ⇒ a ≡ c (mod n).

Claim. For n > 0, every a ∈ ℤ is congruent mod n to some r ∈ ℤ where 0 ≤ r < n.

Proof. Apply the division algorithm on n and a to obtain a = qn+ r , where q ∈ ℤ and 0 ≤ r < n.
Then a − r = qn, implying n|(a − r) and a ≡ r (mod n).

Claim. We can add and multiply congruences. If a ≡ b (mod n) and c ≡ b

(mod n), then the following hold:

a + c ≡ b + d (mod n)

ac ≡ bd (mod n).

Proof. We know that a − b = kn and c − d = jn for k, n ∈ ℤ. Thus,

(a + c) − (b + d) = kn + jn = (k + j)n

and

ac − bd = ac − bc + bc − bd = c(a − b) + b(c − d)

= ckn + bjn = (ck + bj)n.
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We might want some concrete way to think about all the numbers congruent to a �xed number
mod n. For instance, we will probably want to express the notion of "wrapping around" when
a number exceeds its modulus. This motivates the following de�nition:

De�nition 2.1.2. The congruence class of a mod n is

[a]n = {b ∈ ℤ | b ≡ a (mod N )}.

When unambiguously referring to one modulus, we omit the subscript so that [a]n = [a]. When
we are clearly dealing with ℤn, we drop the brackets altogether. For instance, in ℤ5, we can
write 2 + 3 = 0.

Here is a result that makes intuitive sense:

Theorem 2.1.1. Congruence classes mod n partition the integers into exactly n

non-overlapping subsets of ℤ.

Proof. Firstly, we will establish a criterion for determining that two equivalence classes are
equal. We claim that if a ≡ b (mod n), then [a] = [b]. Take some c ∈ [a]; then a ≡ c (mod n).
By symmetry and transitivity, b ≡ c (mod n), so c ∈ [b]. Thus, [a] ⊆ [b]. Analogously, [b] ⊆ [a].
We conclude [a] = [b].

Note that it is also easy to show the converse:

[a] = [b] ⇒ a ∈ [b] ⇒ a ≡ b (mod n).

Now suppose two congruence classes [a], [b] are not disjoint; in other words, [a] ∩ [b] ≠ ∅.
Then there exists some c such that c ∈ [a] and c ∈ [b]. Respectively, these imply a ≡ c (mod n)

and b ≡ c (mod n).

By transitivity, a ≡ b (mod n), so [a] = [b] from the above result. So either [a] and [b] are
disjoint or [a] = [b]. This shows the non-overlapping part of the theorem.

Since every a ≥ n will reduce to some 0 ≤ r < n mod n, the distinct congruence classes mod
n are given by [0], [1],… , [n − 1]. To show that these are unequal, it su�ces to show that
0, 1,… , n − 1 are pairwise incongruent mod n, per the converse of our criterion above.

Let s and t be distinct integers in the range [0, n). WLOG, let s < t . Then 0 < t − s < n, so
n - (t − s). Therefore, t ≢ s and thus [0], [1],… , [n − 1] are distinct.

Example 2.1.1. Consider the following mapping:

[a]7 ↦ ["round down a to the nearest multiple of 10"]7.

Why isn’t this a well-de�ned function? On the other hand, why is the following
mapping well-de�ned?

[a]7 ↦ [−a]7.

The �rst is not well-de�ned because it maps di�erent representations of the same
input to di�erent outputs. Note that [5] = [12] but the map sends the �rst to 0 and
the second to [10] = [3].

To show the second is well-de�ned, we write the same congruence class two
di�erent ways and show they map to the same result. Let [a] = [b]. Then 7|(a − b),
which implies 7| − (a − b), so 7|((−a) − (−b)). Therefore, [−a] = [−b], as desired.
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2.2 Arithmetic in ℤn

Since the representatives of congruence classes are integers, it seems natural to extend arith-
metic in ℤ to ℤn. We will show that the following operations are well-de�ned on congruence
classes in ℤn:

[a] + [b] = [a + b]

[a][b] = [ab].

Proof. De�ne [c] = [a] and [d] = [b]. Then we want to show [c +d] = [a+b]. We already know
a ≡ c (mod n) and b ≡ d (mod n). Therefore, (a+b) ≡ (c +d) (mod n), so [a+b] = [c +d].

Unsurprisingly, these operations work similarly to those in ℤ.

Claim. Multiplication is commutative and distributes over addition.

Proof. Commutativity:
[a][b] = [ab] = [ba] = [b][a]

and distributivity:

[a] ⋅ ([b] + [c]) = [a] ⋅ [b + c]

= [a(b + c)] = [ab + ac]

= [ab] + [ac].

Let’s solve some equations in ℤn.

Example 2.2.1. Given that (a, n) = 1, solve [a]x = [1], where x ∈ ℤn.

From the �rst condition, we can write au + nv = 1 for u, v ∈ ℤ. This implies
1 − au = nv, so au ≡ 1 (mod n). Thus, [au] = [a][u] = [1]; in other words, x is
the congruence class represented by the Bezout coe�cient of a.

Example 2.2.2. If p is prime and [a] ≠ 0, show that [a]x = [b] always has a
unique solution in ℤp .

First, we will show a solution exists. Note that multiplying any solution to [a]x =

[1] by [b] will give the result. The solution to this equation exists by the previous
example and the fact that [a] ≠ 0 ⇒ p - a ⇒ (a, p) = 1.

To show uniqueness, suppose [a]x1 = [a]x2 = [b]. Then [a]x1−[a]x2 = [a](x1−x2) =

[0]. But since (a, p) = 1, we conclude p|(y1 − y2), where y1, y2 are representatives
for x1, x2, respectively. So y1 ≡ y2 (mod p) and x1 = x2.

Example 2.2.3. When does [a]x = [b] have a solution in ℤn? When does it have
multiple solutions?

Let [y] = x . Note that [a]x = [b] having a solution is equivalent to �nding y such
that ay ≡ b (mod n), or ay − b = kn for k ∈ ℤ. We can rearrange this equation to
express b as a linear combination of a and n.
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But since the smallest linear combination of a and n is (a, n), it is easy to see that
any linear combination is a multiple of (a, n). Similarly, any multiple of (a, n) is
an LC of a and b. So we see that a solution x exists i� b can be written as an LC
of a and n; that is, when (a, n)|b.

There are multiple solutions when (a, n) ≠ 1. In this case, we can �nd d such that
d ⋅ (a, n) = n and [d] ≠ 0, which implies [ad] = [0]. Therefore, if [a]x = [b], we
also have [a](x + [d]) = [b].

Remark. In the special case b = 1, the only way to satisfy (a, n)|b = 1 is if
(a, n) = 1. We can restate this as “[a] is a unit in ℤn i� (a, n) = 1.”
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3 Rings

3.1 The Basics
De�nition 3.1.1. A ring is a non-empty set R equipped with two binary opera-
tions + and × such that

• + and × are associative

• + is commutative

• + has an identity, denoted 0R

• Any r ∈ R has an inverse for +, denoted −r

• × has an identity, denoted 1R

• × distributes over +.

Some de�nitions do not require the existence of 1R; rings that contain it are
also called rings with identity/unity.

De�nition 3.1.2. A commutative ring is a ring R in which × is commutative.

Remark. Although it is intuitive in ℤ, 0R × x = 0R is not explicitly mentioned in
the ring axioms. We must show it as follows:

0R × x = (0R + 0R) × x = 0R × x + 0R × x

⇒ 0R = 0R × x,

where in the last step we add −(0R × x) to both sides.

De�nition 3.1.3. A nonempty subset S of a ring R is a subring of R if S is a ring
with the same operations and identities as R.

Theorem 3.1.1. If S ⊂ R is nonempty and R is a ring, S is a subring of R if

• 0R , 1R ∈ S

• S is closed under addition

• S is closed under additive inverse

• S is closed under multiplication

3.2 Ring Homomorphisms

De�nition 3.2.1. Given rings R and S, a mapping R
�

−→ S is a ring homomor-
phism if it has the following properties:

• �(x + y) = �(x) + �(y) for x, y ∈ R

• �(xy) = �(x)�(y) for x, y ∈ R

• �(1R) = 1S

12



De�nition 3.2.2. A ring isomorphism is a bijective ring homomorphism. If
there exists an isomorphism between rings R and S, then we say they are isomor-
phic, or R ≅ S.

De�nition 3.2.3. The kernel of a ring homomorphism � is de�ned as

ker � = {r ∈ R | �(r) = 0S}.

As with linear transformations, ring homomorphisms have the following property:

Theorem 3.2.1. A ring homomorphism from R to S is injective i� its kernel is {0R}.

Proof. Suppose � is injective. Then, for x, y ∈ R, we have �(x) = �(y) ⇒ x = y . Therefore,

�(0S) = �(x − y) = �(x) − �(y) = x − y = 0T .

But since � is injective, this is the only value that maps to 0T . Thus, ker � = {0S}.

Now suppose ker � = {0R}. Take x, y ∈ R such that �(x) = �(y). Then 0T = �(x) − �(y) =

�(x − y). By assumption, x − y = 0R , so x = y and � is injective.

Here are some rapid-�re properties of ring homomorphisms given � from S to T :

Claim. �(0S) = 0T .

Proof. �(0S) = �(0S + 0S) = �(0S) + �(0S) ⇒ �(0S) = 0T .

Claim. � respects additive inverses.

Proof. Take x ∈ S. Then 0T = �(x − x) = �(x) + �(−x), so �(x) is the additive inverse of �(−x).
Thus, −�(x) = �(x).

Claim. If u ∈ S is a unit, �(u) ∈ T is a unit.

Proof. Let uv = 1S . Then
1T = �(1S) = �(uv) = �(u)�(v).

So �(u) is a unit whose inverse is �(v).

Here is a useful result about ring isomorphisms:

Theorem 3.2.2. Let � ∶ R → S be a ring isomorphism. Then �−1
∶ S → R is also

a ring isomorphism.

Proof. Since � is bijective, we know its inverse exists and is bijective. We only need to show it
is a ring homomorphism. Clearly, it maps 1S to 1R .

Take s, s′ ∈ S such that �(r) = s and �(r ′) = s′ for r , r ′ ∈ R. Then

�
−1
(s + s

′
) = �

−1
(�(r) + �(r

′
)) = �

−1
(�(r + r

′
)) = r + r

′
= �

−1
(s) + �

−1
(s

′
).

For multiplication,

�
−1
(ss

′
) = �

−1
(�(r)�(r

′
)) = �

−1
(�(rr

′
)) = rr

′
= �

−1
(s)�

−1
(s

′
).
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3.3 More Rings
De�nition 3.3.1. A domain is a commutative ring R in which 0R ≠ 1R and if
ab = 0 for a, b ∈ R, then a = 0 or b = 0.

De�nition 3.3.2. A �eld is a commutative ring R in which 0R ≠ 1R and every
nonzero element has a multiplicative inverse.

Given a commutative ring R:

De�nition 3.3.3. The polynomial ring over R is the set

R[x] = {a0 + a1x +⋯ + anx
n
| ai ∈ R, n ∈ ℕ}

De�nition 3.3.4. The ring of n × n matrices over R is the set Mn(R) of n × n

matrices with entries in R with matrix arithmetic de�ned analogously as with +

and ×.

Below is a familiar property of polynomials:

Theorem 3.3.1. If R is a domain and f , g are nonzero polynomials in R[x], then

deg[f (x)g(x)] = deg f (x) + deg g(x).

Proof. Let f (x) = a0 + a1x +⋯ + anx
n and g(x) = b0 + b1x +⋯ + bmx

m. Then the leading term
of f (x)g(x) is anbmxm+n. But since R is a domain, anbm ≠ 0. Thus, f (x)g(x) is nonzero and its
degree is n +m = deg f (x) + deg g(x).

Corollary 3.3.1. R[x] is a domain i� R is a domain.

Proof. The forward direction is straightforward since R is a subring of R[x]. The converse
follows from Theorem 3.3.1, which implies that the product of nonzero polynomials in R[x] is
nonzero.

Corollary 3.3.2. For any domain R, the units in R[x] are the units in the subring R.

Proof. First, we will show that any unit in R is a unit in R[x]. Take a unit r in R; it satis�es
rs = 1 for some s ∈ R ⊂ R[x]. So both r and s are also units in R[x].

Now we will show the converse; that every unit in R[x] is a constant polynomial i.e., a
member of R. Recall that deg[f (x)g(x)] = deg f (x) + deg g(x). When f (x)g(x) = 1, we have
deg[f (x)g(x)] = 0. Since degree is non-negative, it must be that deg f (x) = deg g(x) = 0. So
f (x) and g(x) are constant polynomials.

3.4 Polynomial Rings
De�nition 3.4.1. A polynomial is monic if its leading term (term of highest
degree) has coe�cient 1.

14



Theorem 3.4.1. Let F be a �eld and f (x), g(x) ∈ F [x] with g(x) ≠ 0. Then there
exist unique polynomials q(x), r(x) ∈ F [x] such that

f (x) = q(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

Theorem 3.4.2. Let F be a �eld and a(x), b(x) ∈ F [x], not both zero. Then there is
a unique monic polynomial that is the GCD d(x) of a(x) and b(x). Moreover, there
exist u(x), v(x) ∈ F [x] such that a(x)u(x) + b(x)v(x) = d(x).

Theorem 3.4.3. Let F be a �eld. Every non-constant polynomial in F [x] can be
factored into irreducible polynomials. This factorization is unique up to order and
unit multiples.

Example 3.4.1. In the ring ℤ2[x], we can divide the polynomial x5 + 3x
3
+ x

2
+ 1

by x2 + 1 by �rst reducing the coe�cients and then applying trial and error; we
obtain x3 + 1.

Note, however, that the �eld that creates the polynomial ring can a�ect division.
For instance, we cannot divide x2 − 3 by 2x − 1 in ℤ[x] because the quotient would
be a polynomial with linear term 1

2
x ∉ ℤ[x].

Thus, the division algorithm for polynomials is not true in general if F is a domain
but not a �eld.

Recall that in elementary algebra, the presence of a root of a polynomial implies that the
polynomial is reducible. For instance, 2 is a root of x2−3x +2, so we can factor it as (x −2)(x −1).
We will now generalize this idea to elements of any polynomial ring. For the next two theorems,
�x f ∈ F[x].

Theorem 3.4.4 (Remainder theorem). For � ∈  , the remainder when f is divided
by (x − �) is f (�).

Proof. We apply the division algorithm on f and (x − �):

f (x) = q(x)(x − �) + r(x),

where q(x), r(x) ∈ F[x] and r(x) = 0 or deg r(x) < deg g(x). Since g(x) is linear, r(x) has degree
0; in other words, it is constant. Now we evaluate f (x) at � to obtain

f (�) = q(x)(� − �) + r = r .

Theorem 3.4.5 (Factor theorem). (x − �) divides f i� f (�) = 0.

Proof. Let r(x) be the remainder on division of f by (x − �).

(x − �)|f ⇒ r(x) = 0 ⇒ f (�) = 0.

Now suppose f (�) = 0. Then deg r(x) < deg(x − �) = 1, so r(x) is constant. But, by assumption,
r(x) = 0, so it is the constant 0. This implies (x − �)|f .
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Shockingly, the factor theorem can be useful when we want to factor polynomials.

Example 3.4.2. Factor x5 − x in ℤ5[x].

Firstly, we write x5 − x = x(x
4
− 1). Note that every integer from 1 to 4 inclusive is

one more than a multiple of 5 when raised to the fourth power. Therefore, they
are all roots of x4 − 1, implying that the roots of x5 − x are 0, 1, 2, 3, and 4. We can
thus factor it as such:

x(x − 1)(x − 2)(x − 3)(x − 4).

This result gives us a strategy for determining whether certain polynomials are irreducible.
Note that if f ∈ F[x] is reducible, it must be the product of two polynomials of lesser degree;
when deg f is 2 or 3, then, one of these polynomials must have degree 1. But it is easy to see
that every linear polynomial has roots.

Therefore, if an f with degree 2 or 3 has no roots, it has no linear factors, meaning that it is
irreducible.

This is, of course, generally untrue for polynomials of degree > 3. For instance, x4 + 2x3 + 3x2 +
2x + 1 = (x

2
+ x + 1)

2 has no linear factors and thus no roots.

As with the integers, we can de�ne congruence in polynomial rings:

De�nition 3.4.2. Fix f (x) ∈ F[x]. De�ne g, ℎ ∈ F[x] to be congruent modulo f
if f |(g − ℎ). This is equivalent to g ≡ ℎ (mod f ) and ℎ ∈ [g]f .

Theorem 3.4.6. Congruence in polynomial rings is an equivalence relation.

Proof. Exercise.

Theorem 3.4.7. Take f (x) ∈ F[x] with degree d > 0. Every congruence class [g]f
contains a unique polynomial from S = {ℎ(x) ∈ F[x] | ℎ(x) = 0 or deg ℎ(x) < d}.

Proof. Apply the division algorithm on division of g by f to obtain g(x) = q(x)f (x) + r(x),
where q and r are unique polynomials in F[x] and r = 0 or deg r < deg f . So r is exactly the
unique polynomial in question.

Remark. We can also show uniqueness by supposing r and s are two polynomials
in S in the same congruence class. Then f |(r − s), but r and s both have lower
degree than f . The only way for the relation to hold is if r − s = 0, or r = s.

Example 3.4.3. How many distinct congruence classes are there for ℤ2[x] mod
x
3
+ x? How about ℤ3[x] mod x2 + x?

By the previous remark, any polynomial in ℤ2[x] with degree less than
deg x

3
+ x = 3 will be in its own congruence class. This is any polynomial of the

form a2x
2
+ a1x + a0, where ai ∈ ℤ2. So we have 23 = 8 distinct congruence classes.

Similarly, the second example has 32 = 9 classes.
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4 Ideals and Quotient Rings

4.1 Ideals
De�nition 4.1.1. An ideal of a ring R is a non-empty subset I satisfying

• I is closed under addition

• If x ∈ I and r ∈ R, then rx ∈ I and xr ∈ I . This is sometimes called the
absorption property.

Example 4.1.1. The following are ideals:

• The set of polynomials with even constant in the ring ℤ[x].

• For a �xed a, {ak | k ∈ ℤ} in ℤ.

• {0} in any ring.

The following are not:

• The set of odd integers in the ring ℤ.

• The set of polynomials with nonzero constant in ℤ[x].

The second example is called the principal ideal generated by a and is denoted (a). For
r , s ∈ R, we have (r) ⊆ (s) when s|r , and (r) = (s) when r |s and s|r . If R is a domain, then r = us
for a unit u (think about it).

De�nition 4.1.2. Let I be an ideal of a ring R. Two elements x, y ∈ R are
congruent mod I if x − y ∈ I . We write x ≡ y (mod I ).

De�nition 4.1.3. The congruence class of y mod I is the set {y + z | z ∈ I} of
all elements of R congruent to y mod I , denoted y + I .

Presented without proof, here are some easy-to-show yet useful properties of ideals.

Claim. For an ideal I of a ring R:

• I contains 0

• I is closed under additive inverses

• 1R ∈ I ⇒ I = R

Example 4.1.2. Let R = ℤ[x] and I be the set of polynomials in R with even
constant. Show that I is an ideal but that I is not a principal ideal generated by
any value.

Proof. I is an ideal because the sum of even constants is even, and the product of even constants
with any constant is also even. To show it is not principal, note that 2 ∈ I . Then, if c generates
I , we have c|2, so c = ±2, ±1.

x ∈ I as well, so c = ±1 since ±2 - x . But 1 ∉ I , a contradiction.

In some rings, we can actually characterize all ideals.
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Theorem 4.1.1. The only two ideals in F are F and {0}.

Proof. Take an nontrivial ideal I in F. Then let r ∈ I , which implies 1 = r
−1
r ∈ I ; hence,

I = F.

Theorem 4.1.2. Every ideal in ℤ is a principal ideal.

Proof. Consider the smallest positive element c in I . Then, by de�nition, (c) ⊆ I . Now take
any x ∈ I ; we wish to show c|x . Using the division algorithm, we can write x = cq + r , where
q, r ∈ ℤ and 0 ≤ r < c.

Note that c ∈ I ⇒ cq ∈ I ⇒ −cq ∈ I . Since ideals are closed under addition, x − cq = r is in I .
By minimality of c, we have r = 0, which implies x = cq ∈ (c).

Remark. Note that not every ideal in every ring is a principal ideal; for instance,
the I in Example 4.1.2 in R = ℤ[x].

De�nition 4.1.4. The set

I = {r1c1 + r2c2 +⋯ + rtct | ri ∈ R},

is denoted (c1, c2,… , ct) and is called the ideal generated by c1, c2 … , cn.

Claim. The above set is an ideal. Moreover, an ideal generated by two integers
m, n is a principal ideal generated by (m, n).

Proof. It is pretty clear the set is an ideal; adding two elements, we can combine each ci pair
to obtain a linear combination like the original form. Multiplying an element in the set just
scales each coe�cient while preserving the linear combination’s structure.

Denote x = (m, n). We will �rst show I ⊆ (x). We can take any element in S and write it as
k1m + k2n for k1, k2 ∈ R. Since x |k1m and x |kn, we have x |(k1m + k2n). So I ⊆ (x).

Now we will show (x) ⊆ I . It su�ces to show x ∈ I since S is closed under multiplication
by any element of R, which is enough to produce any member of (x). By Bezout, there exist
k1, k2 ∈ ℤ such that k1m + k2n = x . So x ∈ I and (x) ⊆ I . Therefore, (x) = I , implying that
(m, n) generates I .

4.2 Quotient Rings
In this section, we generalize the notion of congruence classes to arbitrary ideals in arbitrary
rings.

De�nition 4.2.1. Let I be an ideal of ring R. Then, for x, y ∈ R, we say x is
congruent to y mod I if x − y ∈ I . The analogous notation follows.

De�nition 4.2.2. The congruence class of y mod I is the set {y + z | z ∈ I} of
all the elements of R congruent to y mod I , denoted y + I .

De�nition 4.2.3. The quotient ring of R by I is the set R/I of all congruence
classes mod I in R. Addition and multiplication are de�ned as such:

(x + I ) + (y + I ) ∶= (x + y) + I (x + I ) × (y + I ) ∶= (x × y) + I
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A familiar example of a quotient ring is ℤn = ℤ/(n). It is the set of all congruence classes
mod (n) in ℤ: namely, {[0]n, [1]n,… , [n − 1]n}. Note that addition/multiplication agree with
De�nition 4.2.3.

In the language of quotient rings, we can also write [k]n = k + (n); it is easy to check that
congruence mod the ideal (n) is equivalent to our familiar de�nition of congruence mod
n.

Example 4.2.1. Let R = ℤ6 and consider the subset I = {[0], [2], [4]}.

The elements in the congruence class of [0] are those whose di�erence with [0] is
in I . This is simply the set {[0], [2], [4]}. Note that this is exactly the congruence
class of [2]. For [1], we obtain {[1], [3], [5]}.

Now consider the ring ℤ6/I . It has two elements—the two distinct classes we found
above. We can also express them as 0 + I and 1 + I , or just 0 and 1 if we abuse
notation.

This leads us to the observation that ℤ6/I ≅ ℤ2 under the mapping 0 + I → [0]2

and 1 + I → [1]2.

Example 4.2.2. Consider I = {(r , 0S) | r ∈ R}, which is an ideal of R × S. We claim
that (R × S)/I ≅ S.

To see this, take any element in R × S, say (r , s), given r ∈ R and s ∈ S. In (R × S)/I ,
this is a member of the coset (0R , s) + I since (r , s) − (0R , s) = (r , 0S) ∈ I . We thus
obtain the mapping (0R , s) → s, which is clearly an isomorphism.

Let F be a �eld and let R = F. Consider the ideal I = (f (x)) = {f (x)g(x) | g(x) ∈ R}.

Theorem 4.2.1. ℎ(x) + I is a zerodivisor i� (f (x), ℎ(x)) ≠ 1.

Proof. Suppose (f (x), ℎ(x)) ≠ 1. Then denote it by d(x) ∈ R. We can write f (x) = a(x)d(x) and
ℎ(x) = d(x)b(x) for a(x), b(x) ∈ R. Then

(ℎ(x) + I )(a(x) + I ) = ℎ(x)a(x) + I = d(x)b(x)a(x) + I = f (x)b(x) + I = 0 + I .

So either a(x) + I = 0 + I or ℎ(x) is a zerodivisor. Suppose the former. Then d(x) = 1, since it
must be a monic polynomial of degree 0, a contradiction. Therefore, ℎ(x) is a zerodivisor.

We will show the converse via contrapositive. Suppose (ℎ(x), f (x)) = 1; then there exist
polynomials u(x), v(x) such that ℎ(x)u(x) + f (x)v(x) = 1, so ℎ(x)u(x) + I = 1 + I .

Now, for some polynomial g(x), suppose ℎ(x)g(x) + I = 0 + I . Then we multiply both sides by
u(x), which gives

0 + I = ℎ(x)g(x)u(x) + I = (1 + I )(g(x) + I ).

Then g(x) + I = 0, which implies that ℎ(x) + I is not in general zero or a zerodivisor.

Theorem 4.2.2. ℎ(x) + I is a unit in R/(f (x)) i� (f (x), ℎ(x)) = 1.

Proof. Suppose (f (x), ℎ(x)) = 1. Then we can write f (x)u(x) + ℎ(x)v(x) = 1, so 1 − ℎ(x)v(x) =

f (x)u(x) and ℎ(x)v(x) + I = 1 + I . So ℎ(x) + I is a unit.
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Now suppose ℎ(x) + I is a unit. Then there exists some a(x) + I such that ℎ(x)a(x) + I = 1 + I .
This implies ℎ(x)a(x) − 1 = f (x)b(x) for b(x) ∈ R. We can rearrange this to obtain a linear
combination of f (x) and ℎ(x) equal to 1; hence, (f (x), ℎ(x)) is a multiple of 1. We conclude
(f (x), ℎ(x)) = 1.

Theorem 4.2.3. If F is a �eld, then f (x) is irreducible i� R/(f (x)) is a �eld.

Proof. Follows directly from Theorem 4.2.1 and 4.2.2.

There exists a more general form of this result: a necessary and su�cient condition for whether
a quotient ring is a �eld. First, we introduce the concept of maximal ideals.

De�nition 4.2.4. A proper ideal I in a ring R is maximal if I ( J ⇒ J = R for
any ideal J .

That is, a maximal ideal is one whose only proper superset ideals are itself and the parent
ring.

Theorem 4.2.4. Take a commutative ring R and let I be an ideal of R. Then R/I is
a �eld if and only if I is maximal.

Proof. Suppose I is maximal. We will �rst show that if a ∉ I , then a + I is a unit in R/I .

Consider the set S = {ax + b | x ∈ R, b ∈ I}, which consists of every element of I added to
every possible multiple of a. Clearly, I ⊆ S, so S = R by de�nition of maximal ideal. Therefore,
1 ∈ S, so there exist x ′ ∈ R and b′ ∈ I such that ax ′ + b′ = 1.

But this implies ax ′ − 1 = b
′, so ax ′ ≡ 1 (mod I ). Hence (a + I )

−1
= x

′
+ I , and a + I is a unit.

Now we return to the main result. If a ∉ I , then a + I is nonzero, but by the previous result,
a + I is also a unit. Otherwise, a ∈ I and thus a + I = 0 + I . Therefore, every nonzero element
of R/I is a unit, so the quotient is a �eld.

To show the converse, suppose R/I is a �eld and that there exists an ideal J such that I ( J .
Now take some a ∈ J ⧵I . By assumption, there exists some b + I ∈ R/I such that ab + I = 1 + I .
So 1 − ab ∈ I ( J .

By choice of a and b, we have ab ∈ J , so we conclude 1 ∈ J . Therefore, J = R and I is
maximal.

Remark. In showing the converse, our condition a ∈ J ⧵I was equivalent to
picking a such that a + I was nonzero and thus a unit.

Example 4.2.3. Fix a ∈ ℝ. Prove that (x − a) is maximal in ℝ[x] for all a.

Proof. One way to show this is to show ℝ[x]/(x − a) is a �eld. We claim ℝ[x]/(x − a) ≅ ℝ.

Consider the map � ∶ ℝ[x] → ℝ that sends f (x) to its remainder when divided by (x − a). By
the division algorithm, � is well-de�ned. It is surjective because the codomain is simply ℝ, and
any r ∈ ℝ is mapped to by the constant polynomial r .
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To show injectivity, let f (x) and g(x) map to the same r(x) so that f (x) − p(x)(x − a) =

g(x) − q(x)(x − a) for p(x), q(x) ∈ ℝ[x]. Then f (x) − g(x) = (x − a)(p(x) − q(x)), so f (x) and g(x)
are representative of the same congruence class in ℝ[x]/(x − a).

Therefore, � is a bijection, so ℝ[x]/(x − a) ≅ ℝ. Since the quotient is isomorphic to a �eld, it is
itself a �eld.

4.3 Noether’s First Isomorphism Theorem
Here, we introduce a powerful result that greatly simpli�es proofs like Example 4.2.3.

Theorem 4.3.1 (Noether’s FIT). Let � ∶ R → S be a surjective ring homomorphism,
and let ker � = I . Then R/I ≅ S.

Proof. Fix a surjective ring homomorphism � ∶ R → S with kernel I . De�ne � ∶ R/I → S

such that �(r + I ) = �(r). The goal is to show � is an isomorphism.

First, we show it is well-de�ned. Take r , s ∈ R such that r−s ∈ I (that is, they are representatives
of the same congruence class mod I ). Then �(r + I ) − �(s + I ) = �(r) − �(s) = �(r − s) = 0.

Next, we show it is a homomorphism.

�(1 + I ) = �(1) = 1.

�((r + I ) + (s + I )) = �((r + s) + I ) = �(r + s) = �(r) + �(s) = �(r + I ) + �(s + I ).

�((r + I ) ⋅ (s + I )) = �((r ⋅ s) + I ) = �(r ⋅ s) = �(r) ⋅ �(s) = �(r + I ) ⋅ �(s + I ).

Finally, we show bijectivity. Take any s ∈ S. Since � is surjective, we can pick r ∈ R where
�(r) = s. Then r + I maps to s; hence, � is surjective.

For injectivity, note that �(r + I ) = 0 implies �(r) = 0. Since ker � = I , we have r ∈ I , so r + I is
always 0 + I . Hence, ker � is trivial.

We conclude that � is an isomorphism from R/I to S.

Let’s rework Example 4.2.3 using FIT.

Example 4.3.1. Fix a ∈ ℝ. Prove that (x − a) is maximal in ℝ[x] for all a.

Proof. Consider the evaluation map � ∶ ℝ[x] → ℝ where f ↦ f (a). It is straightforward to
check � is a homomorphism, and surjectivity follows since any � ∈ ℝ ⊂ ℝ[x] maps to itself.

Now consider the ideal (x −a). Then (x −a) ⊆ ker � follows immediately. If we take g(x) ∈ ker �,
then we can write �(g(x)) = �(ℎ(x)(x − a) + r) = 0, so r = 0. This implies g(x) ∈ (x − a), so
(x − a) = ker �.

Result follows from FIT.

We only had to show a homomorphism was surjective and prove two sets were equal—much
easier than naming an explicit isomorphism.

De�nition 4.3.1. An ideal P ( R in a commutative ring R is prime if f g ∈ P

implies f ∈ P or g ∈ P .
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Example 4.3.2. Show that the ideal (x, y) in ℤ[x, y] is prime.

Proof. Note that
(x, y) is prime ⇔ ℤ[x, y]/(x, y) is a domain.

For intuition, supposeℤ[x, y]/(x, y) is a domain. Then if two elements’ representatives multiply
to an element of (x, y), one must also belong to (x, y), which is equivalent to saying the ideal
is prime.

To prove ℤ[x, y]/(x, y) is a domain, we can show it is isomorphic to ℤ. By a similar argument as
above, we know � ∶ ℤ[x, y] → ℤ where f (x, y) ↦ f (0, 0) is a surjective ring homomorphism.
Also, ker � = (x, y). Therefore, by FIT, ℤ[x, y]/(x, y) ≡ ℤ.
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5 Groups

5.1 The Basics
De�nition 5.1.1. A group (G, ∗) is a nonempty set G with an operation ∗ with
the following axioms:

• For g1, g2, g3 ∈ G, we have (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

• There exists e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g.

• For all g ∈ G, there exists ℎ ∈ G such that g ∗ ℎ = ℎ ∗ g = e.

De�nition 5.1.2. An abelian group is a group (G, ∗) with the following axiom:

• For g1, g2 ∈ G, we have g1 ∗ g2 = g2 ∗ g1.

De�nition 5.1.3. A subgroup of a group (G, ∗) is a subset H that is also a group
under ∗.

De�nition 5.1.4. Fix a group (G, ∗). The order of g ∈ G is the smallest n ∈ ℕ

such that gn = e. If no such element exists, g has in�nite order.

Often, we will abuse notation and say “the group G” instead of (G, ∗). Groups are often used as
abstractions for symmetry.

Example 5.1.1. Consider the ways to manipulate an equilateral triangle without
changing its position.

• k: do nothing

• r120: rotate 120
◦ counterclockwise

• r240: rotate 240
◦ CCW

• f1: �ip over vertical axis

• f2: �ip over axis 60◦ CCW from vertical

• f3: �ip over axis 60◦ CW from vertical

Now consider what happens when we compose two of these actions. The column
corresponds to the �rst operation applied, and the row the second.

∗ k r120 r240 f1 f2 f3

k k r120 r240 f1 f2 f3

r120 r120 r240 k f2 f3 f1

r240 r240 k r120 f3 f1 f2

f1 f1 f3 f2 k r240 r120

f2 f2 f1 f3 r120 k r240

f3 f3 f2 f1 r240 r120 k

By inspection, the set combined with ∗ satis�es the identity/inverse axioms. Since
function composition is associative, the operation is too. So the symmetries of
an equilateral triangle form a group with composition; note, however, that the
abelian axiom is not satis�ed.
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We call this the dihedral group of degree 3, or the symmetry group of an
equilateral triangle, or D3.

Here are some basic properties of groups.

Theorem 5.1.1. Fix a group (G, ∗). Then the following hold:

• The identity of G is unique.

• Cancelation holds in G.

• The inverse of each element in G is unique.

Proof.

• Let e, e′ be two identities of G. Then e′ = ee′ = e.

• Suppose ab = ac; then b = c follows from left multiplication by a
−1. We can show

ba = ca implies b = c using right multiplication.

• Let d, d ′ be inverses of a. Then ad = e = ad
′, so d = d

′ by the previous part.

For any ring R, it is true that (R, +) and (R
×
, ×) are always groups; that is, some groups come

from rings. Others do not:

Example 5.1.2. GL2(ℝ) is the set of 2 × 2 invertible matrices with entries in ℝ. We
can quickly check that GL2(ℝ), together with multiplication, satis�es, the group
axioms. This group is also called the general linear group of degree 2.

Rotation by 90
◦ is an element of order 4, rotation by 180

◦ has order 2, and scaling
by 2 has in�nite order.

De�nition 5.1.5. Fix a group G. The cyclic subgroup generated by g ∈ G is
the following subgroup ⟨g⟩:

⟨g⟩ = {g
n
| n ∈ ℤ} = {… , g

−2
, g

−1
, e, g, g

2
,…}.

Here, we use multiplicative notation, but addition is de�ned similarly.

De�nition 5.1.6. A group G is cyclic if G = ⟨g⟩ for some g ∈ G.

So ℤ and ℤn are cyclic groups generated by 1. Incidentally, the order of 1 in ℤn is n, which is
also the group’s order. This is expected.

Theorem 5.1.2. For an element a in a group G, the order of a equals the order of
⟨a⟩ ≤ G.

Proof. First, suppose |a| is in�nite. We claim that the powers of a are distinct. Toward a
contradiction, suppose am = a

n for m ≠ n; then the order of a is at most m − n (exercise), and
we are done. So if |a| is in�nite, ⟨a⟩ = {a

n
| n ∈ ℤ} is in�nite in order.

Now suppose |a| = m. By minimality of m, the elements 1, a, a2,… , a
m−1 are distinct. Now take

any n ∈ ℤ. Using the division algorithm, we write an = amq+r = (a
q
)
m
a
r
= a

r for 0 ≤ r < m, so
a
n is exactly one of the elements stated previously.
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De�nition 5.1.7. Given two groups G and H , their product is the group with
underlying set

G × H = {(g, ℎ) | g ∈ G, ℎ ∈ H}.

The operation is given by

(g, ℎ)(a, b) = (ga, ℎb).

So ℤ2 × ℤ2 is the group containing ordered pairs of elements in ℤ2. However, note that while
|ℤ2 ×ℤ2| = 4 = |ℤ4|, the groups are not isomorphic because ℤ4 has an element of order 4 while
the �rst does not.

De�nition 5.1.8. Take a group G. The subgroup generated by g1, g2,… , gn ∈ G,
denoted ⟨g1, g2,… , gn⟩, is the set of �nite products of the generators g1, g2,… , gn

and their inverses.

Additive notation de�ned analogously.

Note that ⟨g1,… , gn⟩ is the smallest subgroup of G containing g1,… , gn.

Also, if G and H are both cyclic groups of order n, then G and H are isomorphic via the
isomorphism sending one group’s generator to the other. For this reason, we sometimes abuse
notation and refer to the cyclic group of order n, or ℤn.

5.2 Group Homomorphisms
In this section, we will classify all groups of orders 2, 3, and 4.

De�nition 5.2.1. A group homomorphism is a map � ∶ G → H between
groups that satis�es �(g1 ◦ g2) = �(g1) ◦ �(g2).

An isomorphism of groups is a bijective homomorphism between them.

De�nition 5.2.2. The kernel of a group homomorphism � ∶ G → H is the
subset of G:

ker � ∶= {g ∈ G | �(g) = eH}.

Example 5.2.1. The map GLn(ℝ) → ℝ
× sending A ↦ detA is a group homo-

morphism because detAB = detA detB. The kernel is the set of matrices with
determinant 1, or SLn(ℝ), the special linear group.

Theorem 5.2.1. Fix a group homomorphism � ∶ G → H . Then the following hold:

1. �(eG) = eH

2. im � ≤ H

3. ker � ≤ G

4. � is injective i� ker � = {eG}

Proof. Exercise; some of these are identical to their ring homomorphism counterparts.

25



Finding an isomorphism shows that two groups are equivalent up to relabeling, so our strategy
for classi�cation will be to �nd all unique groups up to isomorphism.

Claim. All groups of order 2 are isomorphic.

Proof. Consider any two groups of order 2, say G = {eG , g} and H = {eH , ℎ}.

We can construct a map � ∶ G → H where eG ↦ eH and g ↦ ℎ; by construction, this is a
bijection. It only remains to show that it is a homomorphism, which we quickly check by
exhaustion.

• �(eG ∗ eG) = eH = eH ∗ eH = �(eG) ∗ �(eG)

• �(eG ∗ g) = eH ∗ ℎ = �(eG) ∗ �(g)

• �(g ∗ eG) = ℎ ∗ eH = �(g) ∗ �(eG)

• �(g ∗ g) = �(eG) since g must have an inverse. Then �(g ∗ g) = eH = ℎ ∗ ℎ by the same
argument, which is simply �(g) ∗ �(g).

So � is an isomorphism, and G ≅ H . For intuition, we could draw tables of G and H and see
that the entries di�er only in name.

Claim. All groups of order 3 are isomorphic.

26


	Introduction
	Arithmetic in 
	The Division Algorithm
	The Euclidean Algorithm
	The Fundamental Theorem of Arithmetic

	Congruences and Modular Arithmetic
	Congruence in 
	Arithmetic in 

	Rings
	The Basics
	Ring Homomorphisms
	More Rings
	Polynomial Rings

	Ideals and Quotient Rings
	Ideals
	Quotient Rings
	Noether's First Isomorphism Theorem

	Groups
	The Basics
	Group Homomorphisms


