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0 Introduction
Course covering theory and implementation of machine learning algorithms. Supervised and
unsupervised learning.

Textbook: None.

1 Linear Classi�ers

1.1 Basic De�nitions
Supervised learning: training using a labeled dataset as experience

Classi�cation: the process of assigning inputs to a �nite number of discrete categories

We will consider the example of classifying Amazon reviews to determine their usefulness.
Here, the parts of the review needed for classi�cation are called features, and the process of
selecting them is called feature engineering. The number of people who mark a review as
"helpful" will be our label—what we are trying to predict.

The goal is to construct a model with these speci�cations that can predict the label of a
previously unseen data point given its features.

In this example, we will use the following features: star rating as a fraction of 5 stars, and
review length as a fraction of 200 words. The label will be a binary value: at least 10 votes for
“helpful” corresponds to a positive label, and a negative label otherwise.

1.2 Classi�cation as an ML Problem
Mathematically, features are statistics or attributes that describe the data, which we can
represent in terms of vectors. Take the table below:
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stars length label
0.6 0.7 +
0.2 0.2 -
1 0.9 +

0.2 0.9 -
0.6 0.2 ?

Our feature vectors include [0.6, 0.7]
⊤ and [0.2.0.2]

⊤. Let n be the number of data points in the
training dataset—the set of values used to train a model—and number each point sequentially.
We denote the ith feature vector by x⃗ (i) and the corresponding label by y (i). The jth feature of
the ith data point is denoted x (i)

j
.

In general, x⃗ (i) ∈  , where  is the feature space.

Each training data point i has a label y (i)
∈ {+1, −1} in the case of binary classi�cation. Similarly,

y
(i)
∈  , where  is the label space.

In general, we denote the training set of a supervised learning problem by

Sn = {(x⃗
(i)
, y

(i)
)}

n

i=1
= {(x⃗

(1)
, y

(1)
), (x⃗

(2)
, y

(2)
), … , (x⃗

(n)
, y

(n)
)}.

The problem is thus to predict whether a new, unlabeled review is helpful (+1) or unhelpful
(−1). There are a few ways to approach this task.

First, we will consider a geometric perspective. Let’s plot the features in ℝ
2.

stars length label
0.6 0.7 +
0.2 0.2 -
1 0.9 +

0.2 0.9 -
0.6 0.2 ?

Intuitively, the unclassi�ed point should have a negative label. The data looks like it could be
separated by a line with negative slope partitioning the positive and negative points. This is
an example of a linear decision boundary.

But why restrict ourselves to linear boundaries? Wouldn’t we get a better �t if we chose
a classi�er that could completely accommodate the training data? Consider the following
datasets. We denote the set of possible classi�ers by .
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Observe the �rst dataset. If we use a partition that perfectly separates the data, like the one
shown, it might misclassify obvious points. To accommodate the positive outlier, the curve
becomes convoluted and incorrectly labels the red point that is clearly positive. This is called
over�tting.

Thus, we might be inclined to constrain  so that we don’t end up with a wildly esoteric
decision boundary. On the other hand, if we constrain  too much, we might miss out on
important patterns in the data. A linear decision boundary is obviously insu�cient to classify
the points in the second dataset; it would result in under�tting.

The process of optimally narrowing down  is called model selection.

1.3 Linear Classi�ers
Now, we will look at some mathematical abstractions for these classi�ers.

Our goal is to learn a linear decision boundary, meaning that we will constrain to hyperplanes.
For now, we also make the following simplifying assumptions:

•  contains only hyperplanes passing through the origin

• Any data sets we deal with are linearly separable

Recall the de�nition of hyperplane:

De�nition 1.3.1. A hyperplane in ℝ
d speci�ed by parameter vector ⃗

� ∈ ℝ
d and

o�set b ∈ ℝ is the set of points x⃗ ∈ ℝ
d such that

⃗
� ⋅ x⃗ + b = 0.

In ℝ
2, this is simply the set of lines:

⃗
� ⋅ x⃗ + b = �1x1 + �2x2 + b = 0

⇒ x2 = −

�1

�2

x1 + b.

Note that ⃗� is orthogonal to the hyperplane ⃗
� ⋅ x⃗ = 0 by the de�nition of the dot product.

Example 1.3.1. Consider the hyperplane given by ⃗
� = [10, 10]

⊤ and b = 0. How
will it classify points in quadrant 1 versus 3?

Let x⃗ (1) be strictly in Q1. Then x
(1)

1
, x

(1)

2
> 0, so ⃗

� ⋅ x⃗ = 10x
(1)

1
+ 10x

(1)

2
> 0. In other

words, sign( ⃗� ⋅ x⃗ (1)) = 1.

Analogously, if x⃗ (2) is strictly in Q3, we �nd sign(
⃗
� ⋅ x⃗

(2)
) = −1.

Incidentally, x⃗ (1) is on the same side of the hyperplane as ⃗
� , while x⃗ (2) is on the

opposite. This leads us to the following claim:

Claim. Any data point x⃗ (i) on the opposite side of the hyperplane as ⃗
� satis�es

sign(
⃗
� ⋅ x⃗

(i)
) = −1
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and any data point on the same side satis�es

sign(
⃗
� ⋅ x⃗

(i)
) = 1.

Proof. Recall the following property of the dot product:

⃗
� ⋅ x⃗ = ‖�‖2‖x⃗‖2 cos �,

where � is the angle between ⃗
� and x⃗ . If 0◦ ≤ � < 90

◦ or 270◦ < � ≤ 360
◦, then ⃗

� and x⃗ are on
the same side of the hyperplane. In this instance, cosine (and thus the dot product) is positive.

If 90◦ < � < 270
◦, then the dot product is negative. In the case that � ∈ {90

◦
, 270

◦
}, it is normal

to the hyperplane, so the dot product is 0.

So we can intuitively de�ne a linear classi�er ⃗� by predicting the class label of x⃗ using sign( ⃗� ⋅x⃗).
Any x⃗ on the same side of ⃗� has sign( ⃗� ⋅ x⃗) = 1, hence positive classi�cation, and any on the
other side is −1, hence negative classi�cation. A data point that lies exactly on the hyperplane
is not classi�ed decisively, so by convention we say it is misclassi�ed. Mathematically, we
de�ne the linear classi�er as

ℎ(x⃗;
⃗
�) = sign(

⃗
� ⋅ x⃗).

Note that the choice of ⃗� determines not just how the hyperplane is oriented but also which
side corresponds to which label. For instance, �ipping the direction of ⃗� will preserve the
magnitude of any ⃗

� ⋅ x⃗ , but it will invert its sign. This also inverts the classi�cation of every
point.

How do we choose ⃗
�? We try to minimize training error, which is a measure of the fraction

of misclassi�ed points in the dataset. Consider the quantity y (i)
ℎ(x⃗

(i)
;
⃗
�), which is the product

of the actual and predicted labels for data point i.

Recall that both values are in {±1}. Therefore, by simple casework, their product is 1 when
they are equal and −1 when they di�er. Therefore, we de�ne training error as follows:

En(
⃗
�) ∶=

1

n

n

∑

i=1

Jy (i)
≠ ℎ(x⃗

(i)
;
⃗
�)K

=

1

n

n

∑

i=1

Jy (i)
ℎ(x⃗

(i)
) ≤ 0K

Next, we will look at the perceptron algorithm, which chooses an optimal ⃗� by minimizing
En.
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1.4 The Perceptron Algorithm
De�nition 1.4.1. Given training examples Sn = {(x⃗

(i)
, y

(i)
)}

n

i=1
, we say the data

are linearly separable (without o�set) if there exists ⃗
� ∈ ℝ

d such that

y
(i)
(
⃗
� ⋅ x⃗

(i)
) > 0

for any i ∈ {1, … , n}.

⃗
� ⋅ x⃗ = 0 is called the separating hyperplane.

Here, we will introduce a way to �nd such a ⃗
� given a linearly separable dataset.

Algorithm 1 Perceptron algorithm

on input Sn = {(x⃗
(i)
, y

(i)
)}

n

i=1
:

k ← 0, ⃗� (0) ← 0⃗

while there exists a misclassi�ed point do
for i ∈ {1, … , n} do

if y (i)
(
⃗
�
(k)
⋅ x⃗

(i)
) ≤ 0 then

⃗
�
(k+1)

=
⃗
�
(k)

+ y
(i)
x⃗
(i)

k++
end if

end for
end while

If a point x⃗ (i) is misclassi�ed, the perceptron algorithm “includes” it in the newest ⃗� (k) based
on its actual label.

1.5 The Perceptron Algorithm (with o�set)
Now we will consider hyperplanes that do not necessarily pass through the origin. Given a
data point x⃗ (i) ∈ ℝ

d , we add a constant component to obtain x⃗ (i)′ = [1, x⃗
(i)
]
⊤. This also implies

⃗
�
(k)′

∈ ℝ
d+1, where the �rst component is b(k) ∈ ℝ, the o�set of the hyperplane.

Note that if ⃗� (k)′ is a separating hyperplane, we have

y
(i)

[

b
(k)

⃗
�
(k)
]
⋅
[

1

x⃗
(i)
]
> 0 ⇒ y

(i)
(b

(k)
+
⃗
�
(k)
⋅ x⃗

(i)
) > 0,

where in the second inequality, we have the equation of a hyperplane with o�set.
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Algorithm 2 Perceptron algorithm with o�set

on input Sn = {(x⃗
(i)
, y

(i)
)}

n

i=1
:

k ← 0, ⃗� (0) ← 0⃗, b(0) = 0

while there exists a misclassi�ed point do
for i ∈ {1, … , n} do

if y (i)
(
⃗
�
(k)
⋅ x⃗

(i)
) ≤ 0 then

⃗
�
(k+1)

←
⃗
�
(k)

+ y
(i)
x⃗
(i)

b
(k+1)

← b
(k)

+ y
(i)

k ← k + 1

end if
end for

end while

Theorem 1.5.1. The perceptron algorithm converges.

Proof. Exercise. :)
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2 (Stochastic) Gradient Descent

2.1 Empirical Risk
What if our data is not linearly separable? Then the perceptron algorithm does not converge,
but our objective is the same: minimize the empirical risk (in this problem, the training error).
Recall that this is given by

Rn(
⃗
�) ∶=

1

n

n

∑

i=1

Jy (i)
≠ ℎ(x⃗

(i)
;
⃗
�)K

=

1

n

n

∑

i=1

Jy (i)
ℎ(x⃗

(i)
) ≤ 0K

for linear classi�ers. Let z = y
(i)
(
⃗
� ⋅ x⃗

(i)
). Intuitively, this is how “badly” ⃗

� misclassi�es data
point i; note that z is greatest in magnitude when ⃗

� and x⃗
(i) are either closest or furthest

apart, which conveys “certainty.” So, when z < 0, the classi�er is highly certain of its incorrect
prediction.

Note that the empirical risk above uses the 0-1 loss function:

Loss0−1(z) =

{

0 for z > 0

1 otherwise

where, to compute empirical risk, we evaluate the average value of this loss function over every
point in the data set. Unfortunately, minimizing this function is NP-hard. So, let’s consider
some alternative loss functions. Firstly, we write the general formula for empirical risk:

Rn(
⃗
�) =

1

n

n

∑

i=1

Loss(ℎ(x⃗ (i); ⃗�), y (i)
).

Now consider the hinge loss function:

Losshinge(z) = max(1 − z, 0).

Its graph is as follows:

This yields the following empirical risk:

Rn(
⃗
�) =

1

n

n

∑

i=1

max(1 − y
(i)
(
⃗
� ⋅ x⃗

(i)
), 0).

Immediately, we note some advantages. Hinge loss applies a greater penalty to more severe
misclassi�cations, but it also penalizes for being only slightly correct. This forces the classi�er
to be more than “somewhat accurate.”

More importantly, however, this Rn is a convex function, meaning that we can minimize it
using gradient descent.
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2.2 Gradient Descent

Algorithm 3 Gradient descent

k ← 0, ⃗� (0) ← 0⃗

while convergence criteria not met do
⃗
�
(k+1)

=
⃗
�
(k)

− �∇ ⃗
�
Rn(

⃗
�)| ⃗

�=
⃗
�
(k)

k ← k + 1

end while

A convex function, like f (x) = x2, is “bowl-shaped.” This means that the gradient at any point
on the function points away from the bottom of the bowl; consider f (x) as an example. When
x > 0, the derivative is positive, which points away from the vertex at x = 0.

For convex minimization problems, we leverage this by taking small steps in the direction
opposite the gradient. In our case, we have a function of ⃗

� versus Rn( ⃗�) that we want to
minimize by �nding the value of ⃗� that minimizes Rn( ⃗�). So, we take small steps updating ⃗

�

opposite the gradient of Rn( ⃗�).

For convergence criteria, we can use a combination of the following:

• Rn( ⃗�) is less than some amount

• ∇ ⃗
�
Rn(

⃗
�) is less than some amount

• ⃗
� does not change by much

• Some amount of iterations have passed

We can set �, the step size, either as a constant or a variable in terms of k. A constant � can
pose issues if we don’t choose it appropriately; too large and the algorithm will oscillate, but
too small and it will take too long. We can also opt to set � as such:

�k =

1

k + 1

.

Intuitively, this says “make large updates at the beginning but slow down once we’ve made a
few,” which is sensible.

However, a major �aw of gradient descent is that it, in every update step, it computes the
gradient of Rn. Recall that Rn is the average loss across all data points, and thus one GD update
requires us to look at every training data point.

Clearly, this is infeasible if our dataset is large. We want some way to update ⃗
�
(k) without

looking at every point.

2.3 Stochastic Gradient Descent
The idea of SGD is to reduce computational cost by updating the hyperplane based on just one
point, rather than the whole data set.
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Algorithm 4 Stochastic gradient descent

k ← 0, ⃗� (0) ← 0⃗

while convergence criteria not met do
randomly shu�e points
for i ∈ {1, … , n} do

⃗
�
(k+1)

=
⃗
�
(k)

− �∇ ⃗
�
Lossℎ(y (i)

(
⃗
� ⋅ x⃗

(i)
))| ⃗

�=
⃗
�
(k)

k ← k + 1

end for
end while

Note that, in each update, we only compute the gradient of the loss of a single point. For hinge
loss, there are two possible outcomes of the update step. If z ≥ 1, then the loss and gradient
are 0, so no update is made. If z < 1, then hinge loss becomes 1 − y (i)

(
⃗
� ⋅ x⃗), whose gradient

with respect to ⃗
� is −y (i)

x⃗
(i).
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3 SVMs and Kernels

3.1 Hard Margin SVMs
Assume linearly separable data.

The principle behind picking a separating hyperplane is that we want it to classify the training
set correctly and be maximally removed from training examples closest to the decision boundary
(maximum margin separator). We de�ne the suport vectors to lie parallel to the hyperplane
on these closest training points.

Mathematically, we want ⃗� , b such that

y
(i)
(
⃗
� ⋅ x⃗ + b) ≥ 1

for all i (recall hinge loss).

Now de�ne



(i)
(
⃗
�, b) =

y
(i)
(
⃗
� ⋅ x⃗ + b)

‖
⃗
�‖

as the distance from x⃗
(i) to the hyperplane. Note that 
 (i) has a lower bound of 1

‖
⃗
�‖

due to the
above constraint.

If we have multiple separating hyperplanes, we want to pick the ⃗
� and b that maximize the

minimal distance from the hyperplane to a training point. In other words, we want

max

⃗
�,b

min
i



(i)
(
⃗
�, b) subject to y (i)

(
⃗
� ⋅ x⃗ + b) ≥ 1.

Now we will look for a closed form expression of the min term. Recalling the de�nition of 

and the hinge loss constraint, we claim that mini 


(i)
(
⃗
�, b) =

1

‖
⃗
�‖

.

It is true that
y
(i)
(
⃗
� ⋅ x⃗ + b) > 1 ⇒ 


(i)
(
⃗
�, b) >

1

‖
⃗
�‖

,

but note that in this case we can scale ⃗
� and b down to obtain strict equality in the constraint.

Therefore, if the above holds for every point, we can obtain a smaller margin by modifying ⃗
�

and b:

⃗
� →

⃗
�

y
(i)
(
⃗
� ⋅ x⃗ + b)

b →

b

y
(i)
(
⃗
� ⋅ x⃗

(i)
+ b)

,

where i is the closest data point.

So mini 

(i)
(
⃗
�, b) =

1

‖
⃗
�‖

, which lets us rewrite the optimization problem as such:
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max

⃗
�,b

min
i



(i)
(
⃗
�, b)

⇒ max

⃗
�,b

1

‖
⃗
�‖

⇒ min

⃗
�,b

‖
⃗
�‖

2

2

.

We have just obtained a quadratic program, which is computationally easy to minimize. The
term inside the “min” is called the objective function, which we wish to minimize while
satisfying the constraint y (i)

(
⃗
� ⋅ x⃗ + b) ≥ 1.

This process of manipulating ⃗
� and b re�ects the fact that the constraint cannot be violated,

and that we may only modify the objective function in �nding an optimal solution.

3.2 Soft Margin SVMs
What if the dataset is not linearly separable? In this situation, not every point will satisfy
y
(i)
(
⃗
� ⋅ x⃗ + b) ≥ 1. Either a point is on the wrong side, in which case y (i)

(
⃗
� ⋅ x⃗ + b) < 0, or it is

classi�ed correctly but without certainty: 0 < y (i)
(
⃗
� ⋅ x⃗ + b) < 1.

To account for this, we will modify the optimization problem as follows:

min

⃗
�,b

‖
⃗
�‖

2

+ C

n

∑

i=1

�i

subject to y (i)
(
⃗
� ⋅ x⃗ + b) ≥ 1 − �i .

�i is called the slack variable, and it allows the constraint to be violated at the expense of an
additional penalty in the objective function. Therefore, the classi�er still has an incentive to
classify points according to the original constraint.

Note that if a point is so misclassi�ed that it appears on the wrong side, �i will be very large.
Recall that the support vectors are a distance 1

‖
⃗
�‖

from the hyperplane; a point’s slack variable
is determined relative to the support vector on its side.

C is a hyperparameter that a�ects how much the classi�er should be penalized for using slack
variables. When C → ∞, the penalty for misclassi�cations becomes in�nite, and we approach
the behavior of a hard-margin SVM. For lower values of C , the margin loosens and we start to
see data points within the margins.

Apart from being able to classify data sets that are not linearly separable, soft-margin SVMs
also have higher tolerance to over�tting because they are willing to misclassify outliers to
obtain better overall performance.

3.3 Feature Maps
What if we want a circular decision boundary? Recall the equation of a circle of radius 1
centered at (2, 2).

(x1 − 2)
2
+ (x2 − 2)

2
= 1

12



⇒ x
2

1
+ x

2

2
− 4x1 − 4x2 + 7 = 0.

Now we will de�ne the following mapping from ℝ
2 to ℝ

5:

�(x⃗) = [x
2

1
, x

2

2
, x1, x2, 1]

⊤
.

Since any point in ℝ
5 can also be predicted using a linear classi�er, we will construct one in

terms of the points of the above form. Consider the following ⃗
� :

⃗
� = [1, 1, −4, −4, 7]

⊤
.

and note that �(x⃗) ⋅ ⃗� = 0, when expanded, is exactly the expression for the circular decision
boundary.

This is the idea behind feature maps, which send data to a higher-dimensional space in
which a separating hyperplane exists; in the lower-dimensional space, the hyperplane will
then correspond to a non-linear decision boundary.

3.4 Dual SVMs
Recall the quadratic program formulation for hard-margin SVM with no o�set:

min

⃗
�

‖
⃗
�‖

2

2

subject to y (i)
(
⃗
� ⋅ x⃗

(i)
) ≥ 1.

We want to rewrite this in the dual form:

max

�⃗ ,�i≥0

n

∑

i=1

�i −

1

2

n

∑

i=1

n

∑

j=1

�i�jy
(i)
y
(j)
x⃗
(i)
⋅ x⃗

(j)
.

The output is a ⃗
�
∗ in terms of the �i , which is the same ⃗

� we would have gotten from solving
the QP.

⃗
�
∗
=

n

∑

i=1

�̂iy
(i)
x⃗
(i)
.

This is important because mapping to a higher dimensional space requires us to compute the
computationally expensive quantity �(x⃗ (i)). With the dual form, we only need �(x⃗ (i)) ⋅ �(x⃗ (j)),
which is sometimes easier to compute than separately �nding each term.

Now we will derive the dual form in general. Recall the general form of a constrained opti-
mization problem:

min

w⃗

f (w⃗) such that ℎi(w⃗) ≤ 0

for i ∈ {1, … , n}. In other words, we want to minimize f (w⃗) while satisfying ℎ1(w⃗) ≤ 0,
ℎ2(w⃗) ≤ 0, etc.

We write the Lagrangian:

L(w⃗, �⃗) = f (w⃗) +

n

∑

i=1

�iℎi(w⃗)

13



for non-negative �i . Now we de�ne the following function:

gp(w⃗) = max

�⃗ ,�i≥0

L(w⃗, �⃗).

If all constraints are satis�ed, then ℎi(w⃗) ≤ 0 for all i. Since �i is by de�nition non-negative, the
only way to maximize L(w⃗, �⃗) is to send all the �i to zero. In this case, then, gp(w⃗) = f (w⃗).

If constraint j is violated, then ℎj(w⃗) > 0. To maximize L(w⃗, �⃗), we then send �j to in�nity.

Therefore, gp(w⃗) has the property that it is f (w⃗) is all constraints are satis�ed, and ∞ otherwise.
In other words, if all constraints are satis�ed, then

min

w⃗

gp(w⃗) = min

w⃗

max

�⃗ ,�i≥0

L(w⃗, �⃗) = min

w⃗

f (w⃗).

There is a name for this representation of the problem: the primal formulation.

min

w⃗

max

�⃗ ,�i≥0

L(w⃗, �⃗).

Swapping the max and min gives the dual formulation.

max

�⃗ ,�i≥0

min

w⃗

L(w⃗, �⃗).

The di�erence between these solutions is called the duality gap, which gives a lower bound
on the size of the primal. For our problem, the dual gap is zero, so we can solve the dual form
for a solution to both formulations.

With this in mind, we �nd the dual formulation for the QP formulation of the hard-margin
SVM without o�set:

min

⃗
�

‖
⃗
�‖

2

2

subject to y (i)
(
⃗
� ⋅ x⃗

(i)
) ≥ 1.

There are n constraints for this problem; one for every data point. First, we write the La-
grangian:

L(
⃗
�, �⃗) =

‖
⃗
�‖

2

2

+

n

∑

i=1

�i(1 − y
(i)
(
⃗
� ⋅ x⃗

(i)
)).

Now we write the dual formulation:

max
�,�i≥0

min

⃗
�

L(
⃗
�, �⃗).

To minimize L( ⃗�, �⃗), we set ∇ ⃗
�
L(
⃗
�, �⃗)| ⃗

�=
⃗
�
∗
= 0 and solve for ⃗

�
∗:

∇ ⃗
�

[

‖
⃗
�‖

2

2

+

n

∑

i=1

�i −

n

∑

i=1

�iy
(i)
(
⃗
� ⋅ x⃗

(i)
)

]

=
⃗
�
∗
−

n

∑

i=1

�iy
(i)
x⃗
(i)
= 0.

Plugging this value of ⃗� ∗ back into the Lagrangian, we obtain

max

�⃗ ,�i≥0

n

∑

i=1

�i −

1

2

n

∑

i=1

n

∑

j=1

�i�jy
(i)
y
(j)
x⃗
(i)
⋅ x⃗

(j)
.

14



The solutions �̂i of this optimization problem have an interesting property. Recall the La-
grangian:

L(
⃗
�, �⃗) =

‖
⃗
�‖

2

2

+

n

∑

i=1

�i(1 − y
(i)
(
⃗
� ⋅ x⃗

(i)
)).

If ⃗� ∗ satis�es the constraints, as discussed in the general case, then the sum term is zero. This
implies that �i(1 − y (i)

(
⃗
� ⋅ x⃗

(i)
)) = 0. Therefore, if point i satis�es �̂i > 0 (since � is always

non-negative), we know y
(i)
(
⃗
� ⋅ x⃗

(i)
) = 1. This is exactly the condition for x⃗ (i) being on the

margin boundary (making it a support vector for a hard-margin SVM).

On the other hand, if y (i)
(
⃗
� ⋅ x⃗

(i)
) > 1, then �̂i = 0. Barring edge cases, either the primal

inequality is satis�ed with equality or the dual variable is zero. This provides insight into why
support vectors are so important to SVMs; the only vectors that contribute to ⃗

�
∗,

⃗
�
∗
=

n

∑

i=1

�iy
(i)
x⃗
(i)
,

are the ones with nonzero �i . These are simply the support vectors.

In a hard-margin SVM, support vectors can only lie on the margin because they are the only
points that satisfy the hard-margin constraint with equality: y (i)

(
⃗
� ⋅ x⃗

(i)
) = 1. In a soft-margin

SVM, though, we account for slack variables: y (i)
(
⃗
� ⋅ x⃗

(i)
) = 1 − �i . This implies that any point

within the margin on its side can be a support vector. Note that this includes misclassi�ed
points as well as weakly-classi�ed points.

3.5 The Kernel Trick
Recall the motivation behind feature maps: �nding non-linear decision boundaries. This
involves mapping each data point to a higher dimension and then learning a linear decision
boundary in that space. In the dual form, this looks like:

max

�⃗ ,�i≥0

n

∑

i=1

�i −

1

2

n

∑

i=1

n

∑

j=1

�i�jy
(i)
y
(j)
x⃗
(i)
⋅ x⃗

(j)

⇒ max

�⃗ ,�i≥0

n

∑

i=1

�i −

1

2

n

∑

i=1

n

∑

j=1

�i�jy
(i)
y
(j)
�(x⃗

(i)
) ⋅ �(x⃗

(j)
).

The idea of a kernel is to de�ne a function K ∶ ℝ
d
× ℝ

d
→ ℝ such that

K(x⃗
(i)
, x⃗

(j)
) = �(x⃗

(i)
) ⋅ �(x⃗

(j)
),

which is theoretically easier to compute than �nding �(x⃗ (i)) and �(x⃗ (j)) explicitly. Intuitively,
K(x⃗

(i)
, x⃗

(j)
) is a measure of similarity between x⃗(i) and x⃗ (j), just like the dot product.

Example 3.5.1. Consider a feature map �(u⃗) = [u
2

1
, u

2

2
,

√

2u1u2]
⊤ for x⃗ ∈ ℝ

2. Then

�(u⃗) ⋅ �(v⃗) = [u
2

1
, u

2

2
,

√

2u1u2]
⊤
⋅ [v

2

1
, v

2

2
,

√

2v1v2]
⊤

= u
2

1
v
2

1
+ u2v

2

2
+ 2u1u2v1v2 = (u⃗ ⋅ v⃗)

2
.

So we can de�ne K(u⃗, v⃗) = (u⃗ ⋅ v⃗)
2 as a proxy for �(u⃗) ⋅ �(v⃗) given this particular

feature map �.
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But the decision boundary learned in a higher-dimensional space will also be in that higher
dimension, so if we want to classify a point x⃗ in the original space, we have to evaluate �(x⃗),
right?

No. Note that we can rewrite the classi�cation as:

(

n

∑

i=1

�iy
(i)
�(x⃗

(i)
)

)

�(x⃗)

=

n

∑

i=1

�iy
(i)
K(x⃗

(i)
, x⃗ ).

4 Regression and Regularization

4.1 Regression
The practice of predicting discrete labels is called classi�cation, while predicting continuous
labels is called regression. In binary classi�cation, the labels are of the form y ∈ {−1, 1}, while
in regression, they are y ∈ ℝ.

To perform linear regression, we use a function linear in ⃗
� :

f (x⃗ ;
⃗
�.b) =

⃗
� ⋅ x⃗ + b.

Whereas in classi�cation, the input z to the empirical risk is the product of the label and
prediction, the input to empirical risk for regression is the di�erence between the label and
prediction.

With a di�erent loss input also comes a di�erent loss function. Here, we will consider the
squared loss function:

Loss(z) =
z
2

2

for z = y (i)
−
⃗
� ⋅ x⃗

(i). The idea of this function is to allow small inaccuracies but quadratically
penalize larger ones. Since it is clearly convex, we can use SGD to minimize it; the only novel
part is calculating the update term.

�k∇ ⃗
�
Loss(y (i)

−
⃗
� ⋅ x⃗)

= �k∇ ⃗
�

(

(y
(i)
−
⃗
� ⋅ x⃗

(i)
)
2

2 )

= �k(y
(i)
−
⃗
� ⋅ x⃗

(i)
)(−x⃗

(i)
)

It turns out we can derive a closed-form solution for empirical risk using squared loss. We �rst
write the expression for empirical risk:

Rn(
⃗
�) =

1

n

n

∑

i=1

(y
(i)
−
⃗
� ⋅ x⃗

(i)
)
2

2

.

16



Now we set its gradient to 0 and solve for ⃗
�
∗:

∇ ⃗
�
Rn(

⃗
�) =

1

n

n

∑

i=1

∇
⃗
�

(

(y
(i)
−
⃗
� ⋅ x⃗

(i)
)
2

2 )

=

1

n

n

∑

i=1

(y
(i)
−
⃗
� ⋅ x⃗

(i)
)(−x⃗

(i)
)

= −

1

n

n

∑

i=1

y
(i)
x⃗
(i)
+

1

n

n

∑

i=1

(
⃗
� ⋅ x⃗

(i)
)x⃗

(i)

= −

1

n

n

∑

i=1

y
(i)
x⃗
(i)
+

1

n

n

∑

i=1

x⃗
(i)
(x⃗

(i)
)
⊤ ⃗
�
∗

Now let
⃗
b =

1

n

n

∑

i=1

y
(i)
x⃗
(i)

A =

1

n

n

∑

i=1

x⃗
(i)
(x⃗

(i)
)
⊤ ⃗
�
∗
.

De�ne the following:

X = [x⃗
(1)
, … , x⃗

(n)
]
⊤
=

⎡

⎢

⎢

⎣

x
(1)

1
⋯ x

(1)

d

⋮ ⋱ ⋮

x
(n)

1
⋯ x

(n)

d

⎤

⎥

⎥

⎦

y⃗ = [y
(1)
, … , y

(n)
]
⊤
.

Therefore,
⃗
b =

1

n

X
⊤
y⃗

A =

1

n

X
⊤
X.

We can easily verify these by looking at a few rows/entries.

Returning to the risk function, we obtain a solution for ⃗
�
∗.

0 = Rn(
⃗
�) = −

1

n

n

∑

i=1

y
(i)
x⃗
(i)
+

1

n

n

∑

i=1

x⃗
(i)
(x⃗

(i)
)
⊤ ⃗
�
∗

= −
⃗
b + A

⃗
� ∗

⇒
⃗
�
∗
= A

−1 ⃗
b

=
(

1

n

X
⊤
X
)

−1

(

1

n

X
⊤
y⃗
)

= (X
⊤
X)

−1
X
⊤
y⃗

This is a closed-form solution to minimize empirical risk with squared loss. In some cases, we
might still want to use SGD if the computations involved in computing the closed form are
expensive.

If X⊤
X is not invertible, then the columns are linearly dependent, which implies redundancy

in the features. The process of removing these redundancies is called regularization.
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4.2 Regularization

In general, there is a tradeo� between bias and variance in which high bias corresponds to
more resilience to noise but less accurate predictions, and high variance corresponds to higher
training accuracy but greater risk of over�tting.

The function with smallest variance is the constant function—it is highly rigid and thus would
yield low variance if we were to test it on a new dataset. Obviously, though, it would have
very high error in general, making it high-bias.

On the other hand, to minimize bias, we could use something like a high degree polynomial
or RBF kernel. These methods yield low training error (i.e., low bias) but are likely to vary
greatly on new data due to over�tting (i.e., high variance).

Here, we will look at regularization, which is a way to minimize variance. The idea is to impose
a penalty on the model that increases as the model increases in complexity. We do this by
adding a term to the empirical risk:

Jn,� = �Z(
⃗
�) + Rn(

⃗
�).

� is a hyperparameter. Z( ⃗�) should be convex and smooth so that it �ts into our convex
optimization strategy. It should also force the components of ⃗� to be very small in magnitude
since ⃗

� ⋅ x⃗ and ⃗
� ⋅ x⃗

′ di�er greatly if ⃗� is large.

We will �rst consider ridge (L2) regression, which means that Z( ⃗�) = ‖
⃗
�‖

2

2
. If we apply this to

squared loss, we get

Jn,�(
⃗
�) = �

‖
⃗
�‖

2

2

+

1

n

n

∑

i=1

(y
(i)
−
⃗
� ⋅ x⃗

(i)
)
2

2

.

When � = 0, the regularization has no e�ect and this is simply squared loss regression. When
� → ∞, the model prioritizes minimizing the regularization term, so it sends ⃗

� to 0⃗.

To �nd a closed form solution that minimizes Jn,�, we set the gradient with respect to ⃗
� as 0

and �nd ⃗
�
∗:

⃗
�
∗
= (�I + A)

−1
b

= (�
′
I + X

⊤
X)

−1
X
⊤
y⃗
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4.3 Feature Selection
This topic is motivated by the need to remove uninformative features that could make our
models prone to over�tting.

The �rst is the �lter approach, where we evaluate each feature using some metric (e.g.,
Pearson’s correlation with output) and discard the ones below a threshold. We can also use the
wrapper approach, which selects the best subset of features by scoring a series of subsets
using a learning algorithm.

Finally, we can use embedded methods, which use variable selection as part of the training
process, like L1 or L2 regularization.
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5 Decision Trees

5.1 Basic De�nitions
A decision tree is a tree in which each internal node tests a feature xi , each branch considers
an outcome xi = v, and each leaf assigns a label. Thus, decision trees are generally very
interpretable.

Here is an example of a decision tree constructed from a small dataset:

With this dataset, the choice to split on x1 �rst was arbitrary. However, there are cases where
order matters. Take the following example:

Since x1 decides y entirely on its own, it makes sense to split on x1 �rst to minimize the depth
of the decision tree. If we split on x2 �rst, we would need an additional layer. This re�ects our
overall goal: to �nd the smallest decision tree that minimizes error.

Unfortunately, this problem is NP-hard. However, we can use a heuristic that takes advantage of
entropy, which measures the uncertainty of a value. Intuitively, we want to split on whichever
feature reduces uncertainty the most.

For binary classi�cation, entropy is de�ned as follows:

H(Sn) ∶= −p⊕ log2
p⊕ − p⊖ log2

p⊖,

where p⊕ and p⊖ are the proportion of positive and negative examples, respectively. For a
discrete random variable Y that takes on values {y1, … , yk}, the entropy of Y is generalized
to:

H(Y ) ∶= −

k

∑

i=1

P(Y = yi) log2
P(Y = yi).
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High entropy corresponds to a uniform distribution because there is high uncertainty in
predicting the value. Low entropy corresponds to a more varied distribution.

More relevant to our decision trees is the idea of conditional entropy. Below is how to
compute the entropy of Y given X = x :

H(Y |X = x) = −

k

∑

i=1

P(Y = yi |X = x) log
2
P(Y = yi |X = x),

which we use to compute the conditional entropy of Y given X :

H(Y |X ) =

m

∑

j=1

P(X = xj)H (Y |X = xj).

This suggests a way to decide which feature to split on; evaluate the conditional entropy
H(Y |X ) for each feature X and pick whichever minimizes it. We can formulate this problem
the opposite way–maximize the decrease in entropy, which we call information gain:

IG(X , Y ) = H(Y ) − H(Y |X ).

Note that this value will always be in the range [0, H (Y )].

With this in mind, we can devise a primitive algorithm for generating decision trees: starting
on an empty tree, recursively split on the feature that maximizes information gain. We would
like to have stopping criteria, though, in case the process is computationally expensive or the
dataset is large.

The two we will consider are:

• When every point has the same label

• When every point has the same features

In the �rst case, we set every remaining leaf to the remaining label. In the second, we take the
majority label. This yields the following algorithm:

Algorithm 5 Learning decision trees

if y (i)
= y for all examples in DS then return y

end if
if x⃗ (i) = x⃗ for all examples in DS then return majority label
end if
j ← argminH(y|xj)

for each value v of xj do
DSv ← {examples in DS where xj = v}
recurse on DSv

end for

In theory, decision trees can achieve zero training error, assuming no noise. Therefore, we
need regularization to minimize complexity. We can set a maximum depth, set a minimum
number of samples per leaf, or grow the tree fully and prune it.
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6 Ensemble Methods

6.1 Bagging
Since decision trees are prone to over�tting, we want to increase variance without decreasing
their bias. This leads to the idea of training multiple decision trees and averaging their
predictions, due to the fact that averaging reduces variance.

Concretely, let Z1, … , Zn be IID random variables. Then

Var[Zi] = �
2

= Var

[

1

k

k

∑

i=1

Zi
]

=

1

k
2
Var

[

k

∑

i=1

Zi
]

=

1

k
2

k

∑

i=1

�
2
=

1

k
2
⋅ k�

2

=

�
2

k

.

This approaches 0 as k → ∞.

To train multiple trees, we need multiple datasets. We can achieve this using bootstrap
sampling, where we sample n data points independently from Sn at random with replacement.
This ensures that each dataset is produced from the same distribution.

After we obtain k datasets, we can train k decision trees and use majority vote to �nd the
aggregate decision from all. This process is called bootstrap aggregating, or bagging.
However, note that the datasets obtained from bootstrap sampling are not independent, so we
have to redo our variance analysis.

The Z1, … , Zk are identically distributed as before, but now each pair of Zi and Zj has a nonzero
correlation �(Zi , Zj) ∈ [0, 1]. So, for the aggregate variance, we have

Var

[

1

k

k

∑

i=1

Zi
]

= ��
2
+

1 − �

k

�
2
.

We can send the second term to 0 as before by letting k → ∞, but the �rst term still
lingers.

6.2 Boosting
The idea of boosting is to combine many weak learners into a strong learner. Our only
requirement for the weak learner is that it has > 50% error i.e., it is better than a random guess.
For this course, we will study adaptive boosting, or AdaBoost.

For our weak classi�ers, we will use decision stumps, which are essentially primitive linear
classi�ers. Let  be the set of decision stumps we start with. Then each ℎ ∈  is de�ned
as

ℎ(x⃗;
⃗
�) = sign(�1(xk − �0)).

Here, ⃗� = [k, �0, �1]
⊤. k is the coordinate; that is, the stump classi�es points along the xk axis.

�0 is the threshold, which is the point on the axis through which the stump passes. �1 is the
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direction the stump classi�es “positive.” Essentially, a decision stump is a linear classi�er that
lies parallel to an axis.

We can also write ⃗
� ∈ {1, 2, … , d} × ℝ × {1, −1}. It is easy to see that we can �nd the optimal

decision stump in linear time relative to the number of points.

The idea of AdaBoost is to assign a weight to each training example. In each iteration, we train
a decision stump on the dataset and its weights; the weight of misclassi�ed points is increased.
When this process �nishes, we output the �nal classi�er as a weighted sum of the decision
stumps.

Mathematically, we start by initializing the weights w̃ (i)

0
=

1

n
for i ∈ {1, … , n}. Then, in each

iteration, starting from m = 1, we �nd the best decision stump with respect to the weights
from iteration m − 1:

ℎm = argmin
ℎ∈

n

∑

i=1

w̃
(i)

m−1
Jy (i)

≠ ℎ(x⃗
(i)
)K.

We denote the weighted error of ℎm by �m:

�m =

n

∑

i=1

w̃
(i)

m−1
Jy (i)

≠ ℎm(x⃗
(i)
)K.

This always satis�es �m ∈ [0,
1

2
] because the weak classi�er, by de�nition, has classi�cation

accuracy of 50% or higher. The �nal weight of each decision stump is denoted �m:

�m =

1

2

ln

1 − �m

�m

.

Finally, we update weights of the training examples:

w̃
(i)

m
=

w̃
(i)

m−1
⋅ exp(−�my

(i)
ℎm(x⃗

(i)
))

Zm

,

where the Zm is simply a normalization constant to make sure the sum of the w̃ (i)

m
is 1. Note

the similarity between this update step and the perceptron update step. In both algorithms,
we either increase or decrease some quantity based on y

(i)
ℎm(x⃗

(i)
), or whether the classi�er

correctly predicts point i.

The di�erence is that in this update step, we increase the weight when a point is classi�ed
incorrectly, as per above. The �nal classi�er is given by

sign

(

M

∑

i=1

�mℎm(x⃗)

)

.

Now we will look at some extreme cases. If �m =
1

2
, then �m = 0, which implies that ℎm does

not contribute to the �nal classi�er. Moreover, by the weight update step, �m = 0 implies that
iteration m does not alter the weights. So the next iteration yields the same weak classi�er
with the same � , and so on. Therefore, if �m =

1

2
, the algorithm terminates.

If �m = 0, then �m → ∞. Then ℎm should have in�nite weight, meaning that it is the only
classi�er necessary. Intuitively, this makes sense. �m = 0 means that y (i)

= ℎm(x⃗
(i)
) holds for

every point, so we only need ℎm to perfectly classify the dataset.

Another property of AdaBoost is that it minimizes the exponential loss function exp(−z). Let
Hm−1 = ∑

m−1

t=1
�tℎt be the ensemble model before iteration m.
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Theorem 6.2.1. At iteration m, AdaBoost greedily adds a new weak classi�er to
minimize exponential loss:

ℎm, �m = arg min
ℎ∈,�≥0

L(Hm−1, �ℎ).

Theorem 6.2.2. Suppose that the weighted error in each iteration satis�es �m ≤
1

2
−


for positive 
 . Then if the number of iterations satis�es m >
ln n

2

2
, the AdaBoost output

classi�er must have zero training error.

Theorem 6.2.3. The weighted error of ℎm under new weights {w̃ (i)

m
}
n

i=1
is always 1

2
.

7 Neural Networks
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