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0 Introduction
Elementary analysis—sequences, di�erentiation, and integration, plus some basic algebra and
topology.

Professor: Tasho Kaletha.

Textbook: Elementary Analysis: The Theory of Calculus by Ross. Additional measure theory
notes use Measures, Integrals and Martingales by Schilling.

Source: “Measure 0 Memes for Lebesgue Integrable Teens”
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1 Sets

1.1 The Natural Numbers ℕ
ℕ = {0, 1, 2, 3,…} ⊂ ℤ is the set of natural numbers (some authors exclude 0). Below are some
properties of ℕ:

N1) ℕ is not empty.

N2) ℕ has a smallest element.

N3) Every n ∈ ℕ has a successor n + 1 ∈ ℕ.

N4) If X ⊂ ℕ is such that 0 ∈ X and n ∈ X → n + 1 ∈ X , then X = ℕ.

The last property says that ℕ is the smallest set with the �rst three properties. It is then natural
to conjecture the following:

Claim. The four properties above uniquely characterize ℕ.

We will formulate this with more precise language later. First, we introduce some familiar
technology.

Theorem 1.1.1 (Induction). Let P (n) be a logical statement with parameter n ∈ ℕ.
Assume P (0) is true and P (n)→ P (n + 1). Then ∀n ∈ ℕ, P (n) is true.

Proof. De�ne X ∶= {n ∈ ℕ | P (n) is true} ⊂ ℕ. Then, since 0 ∈ X and n ∈ X → n + 1 ∈ X , we
know X = ℕ.

We also introduce the concept of recursion. To construct a collection (Sn)n∈ℕ of sets or maps, it
is enough to de�ne S0 and Sn+1 given Sn. For instance, to construct f ∶ ℕ → S, it is enough to
specify f (0) ∈ S and f (n + 1) ∈ S given f (n) ∈ S.

Lemma 1.1.1. Let (Sn)n∈ℕ and (S′
n
)n∈ℕ be collections of sets. Assume S0 = S′0 and

Sn = S
′

n
→ Sn+1 = S

′

n+1
. Then Sn = S′n for n ∈ ℕ.

Proof. Follows directly from induction on n.

De�nition 1.1.1. A Peano triple (P, e, s) consists of:

• a set P

• an element e ∈ P

• an injective map s ∶ P → P

such that

P1) e ∉ S(P )

P2) If X ⊂ P is such that e ∈ X and S(X ) ⊂ X , then X = P .

Peano triples are essentially abstractions of the properties of ℕ we stated above. For instance,
it is easy to show that for a Peano triple (P, e, s), we have P = {e} ∪ S(P ) using P2). If we use
the successor function for s, the result mirrors property N4).
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Now we can address our conjecture from earlier.

Theorem 1.1.2. Let (P, e, s) be a Peano triple. There exists a unique bijection
f ∶ ℕ → P such that f (0) = e and f (n + 1) = s(f (n)).

This result says that, for any Peano triple (P, e, s), we can map every natural number n to one
element in P whose successor is the image of n + 1. That is, all Peano triples are equivalent to
ℕ up to bijections.

Proof. f is recursively de�ned, meaning it is unique by Lemma 1.1.1. It su�ces to show it is
bijective.

For injectivity, de�ne the logical statement T (n) ∶= (∀m ∈ ℕ ∶ f (n) = f (m) ⇒ n = m). We
induce on n. First, consider T (0) and take m ∈ ℕ. If m = n = 0, we are done. Otherwise, we
can write m = m

′
+ 1 for m′

∈ ℕ, and we write

f (m) = f (m
′
+ 1) = S(f (m

′
)) ∈ S(P ).

By de�nition, e ∉ S(P ), so f (m) ≠ e = f (n). This shows the contrapositive of T (0).

Now suppose T (n). Again, we will show the contrapositive. Take m ∈ ℕ such that m ≠ n + 1.
If m = 0, we are done by T (0). Otherwise, m = m

′
+ 1 for m′

∈ ℕ. So m′
+ 1 ≠ n + 1⇒ m

′
≠ n,

and f (m′
) ≠ f (n) by assumption. It follows that

f (n + 1) = s(f (n)) ≠ s(f (m
′
)) = f (m

′
+ 1)

since s is injective.

It remains to show surjectivity. Let X = f (ℕ) ⊆ P . Now e = f (0) ∈ f (ℕ) = X and s(X ) =

s(f (ℕ)) = f (ℕ + 1) ⊆ f (ℕ) = X . By P2), X = P , completing the proof.

1.2 The Integers ℤ
ℤ = {… , −3, −2, −1, 0, 1, 2, 3,…} is the set of integers. Although the construction of ℤ as “the
natural numbers and their negatives” is intuitive, it would be nice to de�ne ℤ in a way that
only uses ℕ and its axioms without resorting to ad-hoc de�nitions like “negative” and their
behavior with arithmetic.

One construction represents each integer as a di�erence of natural numbers. Since −5 = 0 − 5,
we would represent −5 as (0, 5). We would also need a new notion of equality since (0, 5) and
(1, 6) represent the same number; try (a, b) ≡ (a′, b′)⇔ a − b = a

′
− b

′.

Now we introduce an abstraction for ℤ analogous to Peano triples for ℕ:

De�nition 1.2.1. An abelian group (G, e, +) consists of

• a set G

• an element e ∈ G

• a map + ∶ G × G → G

such that ∀a, b, c ∈ G:

A1) (a + b) + c = a + (b + c)
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A2) a + b = b + a

A3) a + e = a

A4) There exists a′ ∈ G where a + a′ = e.

Lemma 1.2.1. Let (G, e, +) be an abelian group. Then a + c = b + c ⇒ a + b.

Proof. Exercise, or see 412 notes.

Our goal is to characterize ℤ with respect to an arbitrary abelian group. We will start with the
following map:

Lemma 1.2.2. Let (G, e, +) be an abelian group. Take g ∈ G. There exists a unique
map f ∶ ℤ → G such that f (1) = g and f (a + b) = f (a) + f (b).

Proof. Pretend we had f . What properties would it have?

1. f (0) = f (0 + 0) = f (0) + f (0)⇒ f (0) = e

2. For n ∈ ℕ, we have f (n + 1) = f (n) + f (1) = f (n) + g

3. e = f (0) = f (n + (−n)) = f (n) + f (−n)⇒ −f (n) = −f (n)

Properties 1) and 2) give a unique f ∶ ℕ → G (by the recursive uniqueness lemma from
earlier), and 3) extends the domain to ℤ.

We then get the �rst stated property of f for free: f (1) = f (0 + 1) = f (0) + g = e + g = g. It
remains to show that f respects addition. Consider f (a + b); we have a few cases.

Case 1: a, b ∈ ℕ. We induce on a + b. In the base case, we have a + b = 0 ⇒ a = 0 = b ⇒

f (a + b) = f (0) = e = e + e = f (a) + f (b).

Now suppose the result holds for a + b > 0. WLOG, let b > 0. Then f (a + b) = f (a + (b −1) + 1) =
f (a + (b − 1)) + g. By assumption, we can simplify to f (a) + f (b − 1) + g = f (a) + f (b).

Case 2: a ∈ ℕ, b ∈ −ℕ, a + b ∈ ℕ. Since −b ∈ ℕ, use Case 1: f (a + b) + f (−b) + f (b) =
f (a + b + (−b)) + f (b) = f (a) + f (b).

Case 3: a ∈ ℕ, b ∈ −ℕ, a+b ∈ ℕ. Set a′ = −b and b′ = −a. Then a′ ∈ ℕ and b′ ∈ −ℕ; moreover,
a
′
+ b

′
∈ ℕ since a′ + b′ = −(a + b). So f (a + b) = f (−(a′ + b′)) = −f (a′ + b′) = −(f (a′) + f (b′)) =

−(f (−b) + f (−a)) = f (b) + f (a).

Case 4: a ∈ −ℕ, b ∈ −ℕ. Let a′ = −b and b′ = −a. Adapt the proof from Case 3.

So if we have an abelian group and a map f from ℤ respecting + and e, then f will have these
properties. But this map is not always meaningful; for instance, choosing g = e collapses ℤ
into {e}. We need a more precise characterization.

De�nition 1.2.2. Let G be abelian. g ∈ G is a generator if, for all ℎ ∈ G, we have
ℎ = g + g +⋯ + g or −ℎ = g + g +⋯ + g.

g is free if g + n times
⋯ + g ≠ e when n > 0.

Theorem 1.2.1. Let G be abelian and take g ∈ G. The map f ∶ ℤ → G of the
previous lemma is injective if g is free, and surjective if it is a generator.
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Proof. First, we show injectivity. WLOG, let a − b ∈ ℕ. Then if a ≠ b, we have a − b ≠ 0, so
f (a − b) = g +

a−b times
⋯ + g ≠ e ⇒ f (a) ≠ f (b).

For surjectivity, it su�ces to show f (ℤ) = G if g is a generator. Note that

f (ℤ) = f (ℕ) ∪ f (−ℕ) = {g +
n times
⋯ + g | n ∈ ℕ} ∪ {−(g +

n times
⋯ + g) | n ∈ ℕ}.

The result follows since g is a generator.

So we have just shown a condition on g for when f is bijective. That is, up to bijections, ℤ is
the unique abelian group with a free generator. Nice!

1.3 The Rational Numbers ℚ
ℚ ∶= {

m

n
| m, n ∈ ℤ, n ≠ 0} is the set of rational numbers. Take (a, b) as a name for a

b
. Then

(a, b) ≡ (a
′
, b

′
) when ab′ = a′b.

For ℕ, our abstraction was the Peano triple. For ℤ, it was the abelian group. The underlying
structure of ℚ is the ordered �eld.

De�nition 1.3.1. A �eld is a tuple (F , 0, 1, +, ⋅) consisting of

• a set F

• elements 0, 1 ∈ F such that 0 ≠ 1

• maps +, ⋅ from F × F to F

subject to

F1) (F , 0, +) is abelian

F2) (F ×, 1, ⋅) is abelian

F3) a(b + c) = ab + ac

Remark. This de�nition is an equivalent formulation of “commutative, nontrivial
ring where every nonzero element is a unit.”

De�nition 1.3.2. Let S be a set. A total order on S is a relation ≤ with the
following properties for all a, b, c ∈ S:

O1) a ≤ b ∨ b ≤ a

O2) a ≤ b ∧ b ≤ a ⇒ a = b

O3) a ≤ b ∧ b ≤ c ⇒ a ≤ c

De�nition 1.3.3. An ordered �eld is a tuple (F , 0, 1, +, ⋅, ≤) where (F , 0, 1, +, ⋅) is
a �eld and ≤ is a total order on F subject to

O4) a ≤ b ⇒ a + c ≤ b + c

O5) a ≤ b ⇒ ac ≤ bc if 0 ≤ c

Remark.
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1. (F , 0, +) uses additive notation, while (F ×, 1, ⋅) uses multiplicative notation.

2. ⋅ is de�ned on all of F × F , so a ⋅ 0 makes sense.

3. Many more properties follow. For instance, a ≤ b ⇒ a + (−a − b) ≤

b + (−a − b)⇒ −b ≤ −a.

Theorem 1.3.1. Let F be any ordered �eld. There exists a unique map f ∶ ℚ → F

such that:

• f (a + b) = f (a) + f (b)

• f (ab) = f (a)f (b)

• a ≤ b ⇒ f (a) ≤ f (b)

Moreover, f is automatically injective.

Proof. We start with the map f ∶ ℤ → F whose existence is given from a previous lemma,
where F is the abelian group (F , 0, +) with generator 1.

Moreover, we claim that f is injective and satis�es f (n) > 0 for all n > 0. We can quickly check
that 1F > 0F , so by induction it follows that 1F +⋯ + 1F > 0F . We then express positive n ∈ ℕ

as the sum of n ones; since f respects addition and sends 1 to 1F , we conclude f (n) > 0.

For injectivity, take a, b ∈ ℤ where f (a) = f (b). WLOG, let a ≥ b. Note that a − b ∈ ℕ, so it
directly follows from the above result that f (a) − f (b) = 0⇒ f (a − b) = 0⇒ a = b.

We also claim that f respects multiplication of a, b ∈ ℤ. Suppose b ∈ ℕ; then we induce on b.
In the base case b = 1, we simply have f (a ⋅ 1) = f (a) = f (a) ⋅ 1 = f (a) ⋅ f (1).

Now suppose the property holds for arbitrary b. We write

f (a ⋅ (b + 1)) = f (a ⋅ b + a) = f (a ⋅ b) + f (a) = f (a) ⋅ f (b) + f (a)

= f (a) ⋅ (f (b) + 1) = f (a) ⋅ f (b + 1).

b = 0 is an exercise. Now if b ∈ −ℕ, we write

f (a ⋅ b) = f (a ⋅ (−(−b))) = f ((−a) ⋅ (−b)) = f (−a) ⋅ f (−b)

= (−f (a)) ⋅ (−f (b)) = f (a) ⋅ f (b).

This f is useful because it leads naturally to a map f ∶ ℚ → F . For a, b ∈ ℤ and b ≠ 0, de�ne
f (a/b) ∶= f (a) ⋅ f (b)

−1. Note that since we previously showed f is injective when its domain is
ℤ, we have b ≠ 0⇒ f (b) ≠ 0⇒ f (b) ∈ F

×. So f (b)−1 exists.

It is also worth checking that f is well de�ned; that is, equivalent representations of the
same rational number map to the same image. Suppose a/b = a′/b′ so that ab′ = a′b. Then
f (a) ⋅ f (b

′
) = f (a

′
) ⋅ f (b)⇒ f (a) ⋅ f (b)

−1
= f (a

′
) ⋅ f (b

′
)
−1, as desired.

We must also show that this extended f is a ring homomorphism. The proof is fairly routine,
so we leave it as an exercise.

It remains to prove that if r < s, then f (r) < f (s) for all r , s ∈ ℚ. Write r = a/b and s = a′/b,
where we force a common denominator b > 0. Then

r < s ⇒ a < a
′
⇒ a

′
− a > 0⇒ f (a

′
− a) > 0⇒ f (a

′
) − f (a) > 0
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⇒ f (a
′
) > f (a)⇒ f (a

′
)f (b)

−1
> f (a)f (b)

−1

where the last step is possible since f (b)−1 > 0. So f (s) > f (r), and in fact we get injectivity for
free because r ≠ s ⇒ (r < s) ∨ (s < r)⇒ f (s) ≠ f (r).

Theorem 1.3.1 tells us that ℚ is the smallest ordered �eld. This is because there exists an
injection from ℚ to any ordered �eld F , meaning that ℚ is bijective to some subset of F . Pretty
cool!

For bonus points, here are some miscellaneous properties about �elds.

Theorem 1.3.2. For a �eld F and a, b, c ∈ F :

1. a + c = b + c ⇒ a = b

2. a ⋅ 0 = 0

3. a(−b) = −ab

4. (−a)(−b) = ab

5. If c ≠ 0, then ac = bc ⇒ a = b

6. ab = 0 implies a = 0 or b = 0

Proof.

1. Follows from right addition of −c to both sides.

2. See 412 notes.

3. ab + a(−b) = a(b + (−b)) = a ⋅ 0 = 0. So a(−b) is the additive inverse of ab, as desired.

4. (−a)(−b) +a(−b) = (a+ (−a))(−b) = 0 ⋅ (−b) = 0. By the previous part, (−a)(−b) then equals
ab, the additive inverse of −ab.

5. Follows from right multiplication by c−1 on both sides.

6. Suppose b ≠ 0 and ab = 0. Then 0 = ab(b−1) = a. Otherwise, done.

We can also prove some results using the ordered �eld axioms:

Theorem 1.3.3. For a �eld F and a, b, c ∈ F :

1. a ≤ b ⇒ −b ≤ −a

2. a ≤ b and c ≤ 0 implies bc ≤ ac

3. 0 ≤ a and 0 ≤ b implies 0 ≤ ab

4. 0 ≤ a2 for all a

5. 0 < 1

6. 0 < a implies 0 < a−1

7. 0 < a < b implies 0 < b−1 < a−1

9



Proof.

1. a ≤ b implies a + (−a + (−b)) ≤ b + (−a + (−b)), so −b ≤ −a.

2. By the previous part, 0 ≤ −c, so −ac ≤ −bc and bc ≤ ac.

3. 0 ⋅ a ≤ ba ⇒ 0 ≤ ab.

4. 0 ≤ a is straightforward. If a ≤ 0, we have 0 ≤ a ⋅ a = a2 by (1).

5. Suppose 1 ≤ 0. Then 0 ⋅ 1 ≤ 1 ⋅ 1⇒ 0 ≤ 1, a contradiction.

6. Suppose 0 < a but a−1 < 0. Then 0 ⋅ a−1 > aa−1 ⇒ 0 > 1, a contradiction.

7. Adapt the proof of (1) using multiplicative inverses to obtain b
−1
< a

−1. Then 0 < b
−1

follows from (5).

1.4 The Real Numbers ℝ
So far, we have ℕ, ℤ, and ℚ. But this is not enough; it is well-known that

√

2 ∉ ℚ. So our goal
is to “�ll up” ℚ with the missing numbers.

Let F be an ordered �eld.

De�nition 1.4.1. For a ∈ F , the absolute value of a, denoted |a|, is the following
function:

|x | =

{

x x ≥ 0

−x x ≤ 0

De�nition 1.4.2. For a, b ∈ F , the distance between a and b, denoted dist(a, b),
is de�ned as dist(a, b) = |a − b|.

Theorem 1.4.1. Take a, b ∈ F . Then the following properties hold:

1. |a| ≥ 0

2. |ab| = |a| ⋅ |b|

3. |a + b| ≤ |a| + |b|

Proof.

1. Follows by de�nition.

2. It is straightforward to check that if a and b have the same sign, |ab| = |a| ⋅ |b| = ab.
Otherwise, |ab| = |a| ⋅ |b| = −ab.

3. By de�nition, −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. So −|a| − |b| ≤ a + b ≤ |a| + |b|. This implies
±(a + b) ≤ |a| + |b|, so |a + b| ≤ |a| + |b|.

The last result is also called the Triangle Inequality because for x, y, z ∈ F , we can substitute
a = x − y and b = y − z to obtain |x − z| ≤ |x − y | + |y − z| ⇒ dist(x, z) ≤ dist(x, y) + dist(y, z).
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Geometrically, this is analogous to the statement that the combined length of any two sides of
a triangle is greater than the length of the third.

We will introduce some important de�nitions shortly, but here is a motivating example for the
new terminology.

Claim. If a ∈ ℚ, a > 0, a
2
< 2, there exists b ∈ ℚ where a < b, b2 < 2.

Proof. De�ne b ∶= a − a
2
−2

a+2
∈ ℚ. Since a > 0, we have a < b. Then we write

b
2
− 2 =

(

2a + 2

a + 2
)

2

− 2 =

4a
2
+ 8a + 4

a
2
+ 4a + 4

− 2

=

2a
2
− 4

a
2
+ 4a + 4

= 2
(

a
2
− 2

a
2
+ 4a + 4)

.

a
2
− 2 is negative, so b2 < 2.

This implies that the set S = {a ∈ ℚ | a
2
≤ 2} has no largest element. Even so, it seems like the

elements of S tend toward a number
√

2 without actually reaching it.

De�nition 1.4.3. Let (S, ≤) be an ordered set. An element s0 ∈ S is a maximum
if s ≤ s0 for all s ∈ S.

De�nition 1.4.4. Let (S, ≤) be an ordered set with T ⊆ S.

1. An element s0 ∈ S is an upper bound for T if t ≤ s0 for all t ∈ T .

2. If T has an upper bound, it is bounded above.

3. An s0 ∈ S is called a least upper bound if

• s0 is an upper bound for T

• if s1 is an upper bound for T , we have s0 < s1

The following properties are immediate from these de�nitions:

Claim. Let S be an ordered set with T ⊆ S. Then the following hold:

• If T has a max, it is unique.

• If T has a least upper bound, it is unique.

• A max is a least upper bound.

• A least upper bound for T is a max i� it lies in T .

De�nition 1.4.5. An ordered set S has the least upper bound property (LUBP)
if any subset that is non-empty and bounded above has a least upper bound.

De�nition 1.4.6. If T ⊆ S has a max/min, denote it by max T or min T , respec-
tively. If T ⊆ S has a least upper bound, denote it by sup T—the supremum of T .
The greatest lower bound is called the in�mum, inf for short.
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The LUBP is signi�cant because it formulates the notion of “missing numbers” solely in terms
of order. So, for instance, ℚ does not have the LUBP because S ⊂ ℚ does not have a least upper
bound.

From now on, let F be an ordered �eld with LUBP.

Theorem 1.4.2 (Archimedian Property). Let x, y ∈ F and x > 0. There exists
n ∈ ℕ such that nx > y .

Proof. If y < 0, pick n = 1 and we are done.

Otherwise, suppose the contrary. Then y is an upper bound for the set S = {nx | n ∈ ℕ}. By
LUBP, z = sup S ∈ F . Then z − x is not an upper bound for S, so there exists n ∈ ℕ such that
nx > z − x . But we win because this implies (n + 1)x > z, a contradiction.

Remark. When x = 1, the Archimedian Property implies that ℕ is unbounded
in F .

Theorem 1.4.3 (Density of ℚ in F ). Given z, w ∈ F where z < w , there exists q ∈ ℚ

with z < q < w .

Proof. Our approach is to “zoom in” on z and w .

Apply the Archimedian Property to x = w − z and y = 1 to get n ∈ ℕ such that n(w − z) > 1.
This gives us nw > nz + 1. Now consider S = {m ∈ ℤ | nz < m}. We claim that S is non-empty
and bounded below (by an integer).

Before proving this, let’s admit the claim and let m0
∶= min S. Then m0 − 1 ≤ nz < m0, hence

nz < m0 ≤ nz + 1 < nw and z < m0

n
< w , as desired.

Now we show the claim. We apply the Archimedian Property to x = 1, y = nz and x = 1, y =
−nz to get m1, m2 ∈ ℕ with m1 > nz,m2 > −nz. So m1 ∈ S by de�nition, so S is non-empty,
and m2 is a lower bound for S, as desired.

As a sanity check, we should make sure the LUBP actually guarantees the existence of elements
we know are not in ℚ.

Proposition 1.4.1.
√

2 ∈ F . That is, there exists an element in F that equals 1F + 1F
when multiplied by itself.

Proof. Consider S = {q ∈ ℚ | q
2
< 2} ⊂ ℚ ⊂ F . Clearly, S is non-empty and bounded above. By

LUBP, x ∶= sup S ∈ F . We will show x
2
= 2.

First, we claim x
2
≥ 2. Suppose the contrary: that x2 < 2. We “nudge” x toward 2 and

apply density for a contradiction. Take 0 < k <
2−x

2

2(x+1)
. Since x > 0, we have 0 < k < 1. So

(x + k)
2
− x

2
= 2xk + k

2.

We then weaken the equality to obtain (x + k)2 − x2 ≤ 2xk + 2k, which Kaletha calls “the key
to analysis—being generous at the right moment.” We write

(x + k)
2
− x

2
≤ 2xk + 2k = 2k(x + 1) < 2 − x

2
,

12



where the last step follows from construction of k. Hence (x + k)2 < 2. By density of ℚ, there
exists q ∈ ℚ such that x < q < x +k. Then q2 < (x +k)2 < 2, so q ∈ S. But x < q by construction,
which contradicts the de�nition of x .

Now we show that x2 ≤ 2. Suppose x2 > 2; then take 0 < k = x
2

2x
< x . Given t ≥ x − k, we have

x
2
− t

2
≤ x

2
− (x − k)

2
= 2kx − k

2

≤ 2kx < x
2
− 2

Thus, t2 > x
2
− x

2
+ 2 ⇒ t

2
> 2, implying that t ∉ S. Then x − k is an upper bound for S, a

contradiction.

So we know that if such a �eld F with LUBP existed, it would have these fun properties. Now
we actually construct such an F .

De�nition 1.4.7. A Dedekind cut is a subset S ( ℚ such that

1. S ≠ ∅.

2. If a ∈ S and b ∈ ℚ such that b < a, then b ∈ S. This is called downward
closure.

3. If a ∈ S, there exists b ∈ S where b > a. In other words, max S does not exist.

So {x ∈ ℚ | x
2
< 2 or x < 0} is a Dedekind cut because we showed previously that it has no

upper bound.

Lemma 1.4.1. A Dedekind cut S is bounded above.

Proof. Assume not. Then for any q ∈ ℚ, there exists s ∈ S where s > q. By downward closure,
q ∈ S. Thus, S = ℚ, a contradiction.

Theorem 1.4.4. The maps � ∶ DC → F and � ∶ F → DC , where DC is the set of
Dedekind cuts in F and

�(S) = sup S ∈ F

�(f ) = {q ∈ ℚ | q < f },

satisfy � = �−1.

Proof. We prove a series of claims.

Claim. Let f ∈ F and de�ne S ∶= �(f ). Let f1 = �(S). Then f1 = f .

We have S ∶= {q ∈ ℚ | q < f }. By construction, f is an upper bound for S, so f1 ≤ f . If f1 < f ,
density gives x ∈ ℚ such that f1 < x < f .

But since x < f , we know x ∈ F , contradicting the construction of f1.

Claim. Let S ∈ DC and f = �(S). If T = �(f ), then S = T .

13



First, we show S ⊆ T . We have T = {x ∈ ℚ | x < f }. Take x ∈ S. Then x ≤ f since f = sup S. If
x = f , then f ∈ S and thus S always has a max, which is untrue. So x < f and x ∈ T .

For the opposite inclusion, let x ∈ T . So x < f = sup S. Then x is not an upper bound of s, and
there exists a witness s ∈ S where s > x . By downward closure, x ∈ S.

So we know that there is a correspondence between Dedekind cuts and the elements of an
arbitrary �eld. This leads to the following important result:

Theorem 1.4.5. There exists an ordered �eld with the LUBP.

Proof sketch. Take DC as the underlying set and endow it with order by inclusion. Then
properties O2) and O3) are immediate.

For O1), let S, T ∈ DC where S ≠ T . Assume WLOG that there exists s ∈ T . Then downward
closure for T implies t < s for all t ∈ T , so t ∈ S. Hence T ⊆ S.

Now we show that (DC, ≤) satis�es LUBP.

Take non-empty X ⊆ DC and let S1 ∈ DC such that S ≤ S1 for all S ∈ X . De�ne S0 = ⋃
S∈X

S ⊆ ℚ.
We will show S0 ∈ DC . Since S0 subsumes S ∈ X , we have S ⊂ S0 ⊂ S1; thus, S0 dominates S.
This implies S0 is an upper bound, but it is dominated by any upper bound S1. So S0 is the least
upper bound of X .

But we still have to check S0 ∈ DC! Since X ≠ ∅, there exists S ∈ X . And since S ∈ DC , we
have ∅ ≠ S ⊂ S0, so S0 ≠ ∅. Moreover, since S ⊂ S1, then for all S ∈ X , we have S0 ⊂ S1 ∈ DC , so
S0 ≠ ℚ.

To show S0 has no max, let a ∈ S0. Then there exists S ∈ X such that a ∈ S. Since S ∈ DC , there
exists b ∈ S ⊂ S0 where b > a. Hence S0 has no maximum and it is indeed a Dedekind cut.

Now we turn F ∶= DC into a �eld. For the identities, we de�ne

0F = {x ∈ ℚ | x < 0}

1F = {x ∈ ℚ | x < 1}.

Given S, T ∈ DC , de�ne

S + T = {s + t | s ∈ S, t ∈ T}

−S = {−s | ∃r > 0 ∶ s − r ∉ S}.

The idea behind the additive inverse is to re�ect the “ray” representing the Dedekind cut about
the point 0. This breaks downward closure, so we then take the complement and omit any
resulting maximum.

Now assume S > 0 and T > 0 using our de�nition of order. Then de�ne

S ⋅ T ∶= {s ⋅ t | s ∈ S, t ∈ T for s > 0 or t > 0}.

If we didn’t restrict the sign of s, t , then S ⋅ T would equal ℚ by downward closure.

So we have some operations for DC ; now we show that they satisfy the �eld axioms.
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Claim. (F , 0, +) is abelian.

Proof. A1) and A2) follow from ℚ. For A3), take S ∈ DC . We want to prove S + 0F ⊂ S, so take
s ∈ S and t ∈ 0F . Then t < 0, so s + t < s ⇒ s + t ∈ S.

Now take s ∈ S. Then there exists t ∈ S such that t > s, and then s = t + (s − t). Since t ∈ S and
s − t < 0, we have s ∈ S + 0F . So S = S + 0F .

For A4), we want to show S + (−S) ⊂ 0F . Take s ∈ S and t ∈ −S. By de�nition, −t ∉ S, so s < −t
by downward closure. Therefore, s + t < 0, so s + t ∈ 0F .

Now take v ∈ 0F . Let w = −v/2 > 0. By a “blowing up” argument like the one from the
Archimedian Property proof, there exists n ∈ ℤ such that n ⋅ w ∈ S and (n + w) ⋅ w ∉ S. Then
−(n + 2)w ∈ −S, which gives n ⋅ w + (−(n + 2)w) = −2w = v, and we are done.

Claim. (F ×, 1, ⋅) is abelian.

Proof. A1), A2) follow from ℚ. For A3), take s ∈ S and t ∈ 1F . If s < 0 or t < 0, then s ⋅ t < 0 and
thus s ⋅ t ∈ S (a ray pointing downward and starting at a positive number absorbs all negative
numbers).

If s, t > 0, then since t < 1, we have s ⋅ t < s, so s ⋅ t ∈ S by downward closure. This shows
S ⋅ 1F ⊂ S.

To show the opposite inclusion, take s ∈ S. Since S has no max, we can choose t ∈ S such that
t > s. Then s = t ⋅ s

t
. The result follows because s

t
∈ 1F .

We leave A4), F3), O4), and O5) as exercises.

Theorem 1.4.6. If F1, F2 are ordered �elds with LUBP, there exists a unique bijection
f ∶ F1 → F2 satisfying

f (a + b) = f (a) + f (b)

f (ab) = f (a)f (b)

a < b ⇒ f (a) < f (b).

Proof. We de�ne f ∶ F1 → F2 such that f = �2 ◦ �1 for �2 ∶ DC → F2 and �1 ∶ F1 → DC as
de�ned previously.

Now take n1, n2 ∈ F1. We have

(�2 ◦ �1)(n1 + n2) = sup{q ∈ ℚ | q < n1 + n2}

= n1 + n2

= sup{q ∈ ℚ | q < n1} + sup{q ∈ ℚ | q < n2}

= (�2 ◦ �1)(n1) + (�2 ◦ �1)(n2)

So f respects addition. Similarly, we can show it respects multiplication:

(�2 ◦ �1) ⋅ (n1n2) = sup{q ∈ ℚ | q < n1n2}

= n1n2

= sup{q ∈ ℚ | q < n1} ⋅ sup{q ∈ ℚ | q < n2}

= (�2 ◦ �1)(n1) ⋅ (�2 ◦ �1)(n2).
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Now suppose n1 < n2. Then we have �1(n1) = {q ∈ ℚ | q < n1} ⊂ {q ∈ ℚ | q < n2} = �1(n2),
which implies �1(n1) < �1(n2), so �1 respects the order. And by a property of sup, �1(n1) ⊂ �1(n2)
implies

�2(�1(n1)) = sup(�1(n1)) < sup(�1(n2)) = �2(�1(n2))

so �2 also respects the order. Therefore, f respects order.

It remains to show uniqueness. Take q ∈ Sx . Then, by assumption, i1(q) < x . We then have
f (i1(q)) < x . But since it is the composition of injections, f ◦ i1 is itself an injection. Hence
f ◦ i1 = i2 since i2 is the unique injection ℚ → F2, so i2(q) = f (i1(q)) < f (x). Therefore, q ∈ Sf (x)
and so Sx ⊂ Sf (x).

And since f is a bijection, we can use the existence of the injection f
−1 to show the opposite

inclusion. Consider q ∈ ℚ so that i2(q) < f (q). Then f
−1
(i2(q)) < f

−1
(f (q)) = q, and by

uniqueness of i1, we write i1(q) = f −1(i2(q)) < q. This shows Sx = Sf (x).

So the Dedekind cut in F1 induced by x ∈ F1, which we obtain from �1(x), corresponds to
the Dedekind cut in F2 induced by f (x), namely S ∶= {x2 ∈ F2 | x2 < f (x)}. Therefore,
�2(S) = sup S = f (x), so we conclude that (�2 ◦ �1)(x) = f (x).

De�nition 1.4.8. The unique ordered �eld with LUBP is called the �eld of real
numbers ℝ.

Note that, by Theorem 1.4.6, any two �elds with the LUBP are isomorphic. This means that
there is no “canonical real number;”

√

2, S ∈ DC , or a Cauchy sequence (more on this later)
are all presentations of real numbers: elements of the unique �eld with the LUBP.

Nevertheless, ℝ still has the properties we would expect it to have in the familiar sense (as the
rationals plus the irrationals).

Lemma 1.4.2. Let a ∈ ℝ and a ≥ 0. Assume a < q for all q ∈ ℚ and q > 0. Then
a = 0.

Proof. Assume not. Then a > 0. By density, there is q ∈ ℚ where 0 < q < a, contradiction.

16



2 Sequences and Series

2.1 The Basics
De�nition 2.1.1. A sequence of real numbers is a map x ∶ ℕ → ℝ.

Remark.

1. We may think of x as the enumeration of its image: x0, x1, x2,…. This is not
to be confused with the set {x0, x1, x2,…} since sets cannot have duplicate
elements.

2. We can shift the index as we wish. So x−3, x−2,… , x0,… is an equally valid
sequence. In general, if we want to move the index, we can just choose a
Peano triple with a di�erent starting element.

3. We sometimes denote a sequence by (xn)∞n=0.

Example 2.1.1. The following are sequences:

1. xn = n2

2. xn = (−1)n

3. xn = 1

n
.

4. x1 = 1, x2 = 1, xn+2 = xn+1 + xn.

De�nition 2.1.2. A sequence x converges to L ∈ ℝ if:

∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ |xn − L| < �.

We write xn → L.

This de�nition says that the sequence eventually falls within the margin of error �, which can
be arbitrarily small (but it doesn’t always have to, only eventually—which is a metaphor for
life or something).

Lemma 2.1.1.
1

n

→ 0.

Proof. We start with a “once upon a time:” let � > 0.

By the Archimedian Property, there exists N ∈ ℕ where N > 1/�. Then for n > N , we have
|xN − L| = |1/n − 0| = 1/n < 1/N < �.

Lemma 2.1.2. If xn → L1 and xn → L2, then L1 = L2.

Proof. Take � > 0 and choose the lower bound N as in De�nition 2.1.2. We can do this by
choosing max(NL1

, NL2
). For n > N , we have

|L1 − L2| = |L1 − xn + xn − L2| ≤ |L1 − xn| + |L2 − xn| < � + � = 2�.

Since � can be arbitrarily small, |L1 − L2| = 0.
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De�nition 2.1.3. A sequence (xn) is bounded above or below if

S = {xn | n ∈ ℕ} ⊆ ℝ

is so.

Proposition 2.1.1. A convergent sequence is bounded.

Proof. Suppose xn → L. Then there exists some N ∈ ℕ such that n > N implies |xn − L| < �;
pick � = 1.

Now de�ne M = max({|x0 − L|, |x1 − L|,… , |xn − L|, 1}). M is therefore the maximum deviation
of xn from L; that is, for all n ∈ ℕ, we have |xn − L| ≤ M . This implies −M ≤ xn − L ≤ M , or
L −M ≤ xn ≤ L +M , which bounds (xn).

Proposition 2.1.2. If xn → L, then |xn| → |L|.

Proof. Let � > 0. Then we apply De�nition 2.1.2 to get N such that n > N ⇒ |xn − L| < �. By a
previous result, we write

||xn| − |L|| ≤ |xn − L| < �,

and the result follows.

Proposition 2.1.3. If xn → L and k ∈ ℝ, then kxn → kL.

Proof. If k = 0, we are done. Otherwise, apply De�nition 2.1.2 on (xn) and �/|k| to obtain N

such that n > N ⇒ |k ⋅ xn − k ⋅ L| = |k| ⋅ |xn − L| < |k| ⋅ �/|k| = �. The result follows from this
N .

Proposition 2.1.4. If xn → L and yn → M , then (xn + yn)→ L +M .

Proof. Let � > 0. For (xn), pick N such that n > N implies |xn − L| < �/2 and |yn − M | < �/2.
Then

|(xn + yn) − (L +M)| = |xn − L + yn −M | ≤ |xn − L| + |yn −M | = �/2 + �/2 = �.

Proposition 2.1.5. If xn → L and yn → M , then xnym → LM .

Proof. Since (xn) is convergent, it is bounded by some k > 0 so that |xn| < k for all n ∈ ℕ. Now
choose N such that |xn − L| < �

2⋅|M |
and |yn −M | <

�

2k
. This lets us write

|xnyn − LM | = |xnyn + xnM − xnM − LM |

≤ |xn| ⋅ |(yn −M)| + |M | ⋅ |(xn − L)| <

�

2

+

�

2

= �

Proposition 2.1.6. If xn → L, and L > 0, there exists N ∈ ℕ and r > 0 such that
for all n > N , we have xn > r . That is, there exists a positive eventual lower bound
for (xn).
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Proof. Take � = L

2
. Then there exists N ∈ ℕ such that n > N ⇒ |xn − L| <

L

2
, implying that

−
L

2
< xn − L <

L

2
. So L

2
< xn <

3L

2
. Pick r = L

2
.

Proposition 2.1.7. If xn → L and L ≠ 0, then 1

xn

→
1

L
.

Proof. Let � > 0. By Proposition 2.1.2, |xn| → |L|, and by Proposition 2.1.6, there exists r > 0
and N1 ∈ ℕ such that |xn| > r for n > N1.

Choose N > N1 such that for all n > N , we have |xn − L| < � ⋅ |L| ⋅ r . Then

|
|
|
|

1

xn

−

1

L

|
|
|
|

=

|
|
|
|

xn − L

xn ⋅ L

|
|
|
|

<

� ⋅ |L| ⋅ r

|L| ⋅ r

= �.

Proposition 2.1.8 (Squeeze theorem). Let (xn), (yn), (zn) be sequences. Assume:

1. xn → L and zn → L

2. There exists N such that for all n > N , we have xn ≤ yn ≤ zn.

Then yn → L.

Proof. Let � > 0. Choose N ′
> N such that |xn − L| < � and |zn − L| < � for n > N ′. Then we can

write
−� < xn − L ≤ yn − L ≤ zn − L < �,

which gives |yn − L| < �.

The squeeze theorem gives a general strategy for determining if an abstract sequence is
convergent.

De�nition 2.1.4. A sequence (xn) is non-decreasing if xn ≥ xm when n > m,
non-increasing if xn ≤ xm when n > m, and monotonic if either.

Proposition 2.1.9. A bounded, monotonic sequence converges to some L ∈ ℝ.

Proof. This result should make sense. Think about a monotonically increasing sequence that
never goes past its “maximum threshold” L. Since the sequence never moves away from L, it
should converge to it.

Concretely, we write the following. Replacing (xn) with (−xn) if necessary, we can assume (xn)
is non-decreasing. Now consider S = {xn | n ∈ ℕ}. We claim xn → L, where L = sup S.

Take � > 0. Since L is an upper bound of S, L − � is not an upper bound. Hence there exists a
witness xn ∈ S such that xn > L − �. This gives L − � < xn ≤ L < L + �, so |xn − L| < �.

Now we answer the question: what should xn → ∞ mean?

De�nition 2.1.5. Let (xn) be a sequence. We say xn → +∞ if

∀M ∈ ℝ ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ xn > M,

and xn → −∞ if
∀M ∈ ℝ ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ xn < M.
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Proposition 2.1.10. Let xn → +∞ and yn have a positive eventual lower bound.
Then xn ⋅ yn → +∞.

Proof. Take M ∈ ℝ. Then there exists N ∈ ℕ and r > 0 such that n > N ⇒ xn > M/r and
yn > r . It follows immediately that xnyn > M .

Example 2.1.2. Consider the series xn = n
3
−7

n+1
. We have

n
3
− 7

n + 1

=

n
3
(1 −

7

n
3
)

n(1 +
1

n
)

= n
2
⋅

1 −
7

n
3

1 +
1

n

.

We have showed already that 1

n
→ 0. It follows from the above properties that

−
7

n
3
→ 0.

By addition, 1− 7

n
3
→ 1 and 1+ 1

n
→ 1. By division, their quotient also approaches

1. And since 1 > 0, this fraction has an eventual positive lower bound. Therefore,

n
2
⋅

1−
7

n
3

1+
1

n

diverges because n2 → +∞.

Proposition 2.1.11. Any monotonic sequence converges in ℝ ∶= ℝ ∪ {+∞, −∞}.
More precisely, for a monotonic sequence (xn), the following cases are possible:

1. (xn) is bounded. Then it converges to L ∈ ℝ.

2. (xn) is unbounded above. Then xn → ∞.

3. (xn) is unbounded below. Then xn → −∞.

Proof. For 1), see Proposition 2.1.9.

Assume (xn) is unbounded. Replacing (xn) with (−xn) if necessary, we may assume (xn) is
monotonically increasing. Thus, it is unbounded above.

Now take M ∈ ℝ. Since M is not an upper bound, there exists N ∈ ℕ such that xN > M . And
by monotonicity of (xn), we know n > N ⇒ xn ≥ xN > M . Hence xn → ∞.

2.2 Subsequences
De�nition 2.2.1. Let (xn) be a sequence. A subsequence of (xn) is a sequence (yn)
for which there exists a strictly increasing map f ∶ ℕ → ℕ such that yn = xf (n).

Example 2.2.1. 2, 4, 6,… is a subsequence of 1, 2, 3,…. A subsequence doesn’t
need to have a pattern, so 1, 2, 5, 7,… is another example.

Proposition 2.2.1. If xn → L and (yn) is a subsequence of (xn), then yn → L.

Proof. Let � > 0. Choose N such that |xn − L| < � for n > N . Since f is strictly increasing,
f (n) ≥ n, so |yn − L| = |xf (n) − L| < �.

Corollary 2.2.1. A sequence (xn) converges to L i� every subsequence of (xn) con-
verges to L.

Proposition 2.2.2. Every sequence has a monotonic subsequence.
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Proof. Let (xn) be a sequence. Call xn0 dominant if xn0 ≥ xm for all m > n0. Then we have two
cases:

Case 1: There are in�nitely many dominant terms. Then take the terms and form a monotoni-
cally decreasing subsequence.

Case 2: There are �nitely many dominant terms. Let N be such that for n ≥ N , xn is not
dominant. De�ne (xnk ) recursively as follows:

• xn0 = xN

• If xnk is selected, since it is not dominant, we have x
n
′

k

> xnk
for some n′

k
> nk . De�ne

xnk+1
= x

n
′

k

.

(xnk
) is a monotonically increasing subsequence.

Theorem 2.2.1 (Bolzano-Weierstrass). Every bounded sequence has a subsequence
that converges in ℝ. If we allow ±∞ as limits, then every sequence has a convergent
subsequence.

Proof. Follows from Proposition 2.1.9 and Proposition 2.2.2.

De�nition 2.2.2. The extended real number line is given byℝ ∶= ℝ∪{+∞, −∞}.

Moreover, declare −∞ < a < +∞ for all a ∈ ℝ. We write:

• a + (±∞) = ±∞

• a

±∞
= 0 if a ≠ 0

• a ⋅ (±∞) = ±∞ if a > 0

• a ⋅ (±∞) = ∓∞ if a < 0.

We don’t de�ne (+∞) + (−∞), 0

+∞
, or 0

−∞
. ℝ is not a �eld.

Also, for S ⊂ ℝ, if S = ∅, then sup S = −∞. If S is not bounded above, sup S = +∞.

De�nition 2.2.3. Let (xn) be a sequence. An element L ∈ ℝ is called a subse-
quential limit if there is a subsequence of (xn) converging to L.

Proposition 2.2.3. Let (xn) be a sequence and denote its set of subsequential limits
by S ⊂ R. Then S ≠ ∅ and sup S ∈ S.

Proof. By Bolzano-Weierstrass, S ≠ ∅. It remains to show that S has a maximum.

Case 1: sup S ∈ ℝ. Write L = sup S. For any k ∈ ℕ, L − 1

2k
is not an upper bound for S, so

there exists Lk ∈ S such that L − 1

2k
< Lk ≤ L. And since Lk is a subsequential limit, there

exists a subsequence of (xn) converging to it; hence there is some (xnk ) such that |xnk − Lk | <
1

2k

eventually.

Now we write
|L − xnk

| = |L − Lk + Lk − xnk
| ≤ |L − Lk | + |Lk − xnk

| <

1

k

.

Thus (xnk ) is a subsequence of (xn) converging to L, so L ∈ S.
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Case 2: sup S = +∞. For M ∈ ℕ, M is not an upper bound for S, so there exists Lm ∈ S where
Lm > M . Since Lm is a subsequential limit, there exists (xnm ) such that |xnm − Lm| < Lm − M

eventually, so xnm > M .

Thus (xnm ) is a subsequence going to +∞, so +∞ ∈ S.

Case 3: sup S = −∞. Then S = {−∞}.

De�nition 2.2.4. Let (xn) be a sequence. Then

lim sup xn ∶= lim
n→∞

sup{xm | m ≥ n}

lim inf xn ∶= lim
n→∞

inf{xm | m ≥ n}.

That is, lim sup is the limit of the suprema of the tails of (xn), and analogously for
lim inf.

Remark. The sequence vn ∶= sup{xm | m ≥ n} is non-increasing, so limn→∞ vn

exists, and analogously for wn
∶= inf{xm | m ≥ n}.

Example 2.2.2.

1. xn = 1, 2, 3,…

vn = +∞, so lim sup xn = lim vn = +∞

wn = xn, so lim inf xn = limwn = +∞

2. xn = 1

n

vn = xn, so lim sup xn = 0

wn = 0, so lim inf xn = 0

3. xn = (−1)n

vn = 1, so lim sup xn = 1

wn = −1, so lim inf xn = −1.

It’s not a coincidence that the �rst two sequences satisfy lim sup xn = lim inf xn and are
convergent:

Theorem 2.2.2. Let (xn) be a sequence. Denote its set of subsequential limits by
S ⊂ ℝ. Then the following hold:

1. lim sup xn = sup S ∈ S

lim inf xn = inf S ∈ S

2. There exists a monotonic subsequence converging to lim sup xn and one to
lim inf xn.

3. TFAE:

(a) (xn) converges

(b) S has one element
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(c) lim sup xn = lim inf xn

Moreover, in this case, lim sup xn = lim inf xn = lim xn is the unique element
of S.

Proof.

1. By the previous result, it su�ces to show that lim sup xn = sup S.

We claim that lim sup xn ≥ sup S. Note that there exists a subsequence (xnk ) converging
to sup S. For any n, vn = sup{xm | m ≥ n} ≥ xnk

for su�ciently large k. Thus vn ≥

limk→∞(xnk
) = sup S and lim sup xn ≥ sup S.

Now we will show lim sup xn ≤ sup S. Toward a contradiction, suppose the contrary and
denote x = lim sup xn and y = sup S. We will construct a subsequence (xnk ) such that
xnk

≥
x+y

2
.

After doing so, we may assume (xnk ) is monotonic (otherwise, take some monotonic
subsequence of it), hence convergent to some z ≥ x+y

2
> y, contradicting the de�nition

of y . Now to construct the actual sequence (xnk ), iterate the following procedure:

Write � = x−y

4
. Since vn → x , there exists vn0 such that |vn0

− x | < �. And because
vn0

= sup{xm | m ≥ n0}, we can �nd xm0
in the sequence such that vn0 ≥ xm0

≥ vn0
− �;

that is, |xm0
− vn0 | < �. Thus, |x − xm0

| < 2� =
x−y

2
, which yields xm0

>
x+y

2
, as desired.

2. By the previous part, there exists a subsequence converging to lim sup xn. We can extract
from it a monotonic subsequence using Proposition 2.2.2.

3. (a) ⇒ (b) follows from Proposition 2.2.1. (b) ⇒ (c) follows from part 1. (c) ⇒ (a)

follows from the squeeze theorem on wn ≤ xn ≤ vn.

So we know S can have one element, in which case (xn) converges. But what else can S look
like?

De�nition 2.2.5. A set S is called:

• �nite if there is a bijection S → {m ∈ ℕ | m ≤ n} for some n ∈ ℕ

• countable if there is a bijection S → ℕ

• uncountable otherwise.

Proposition 2.2.4. ℚ is countable.

Proof. Exercise! The TeX is too much work.

Proposition 2.2.5. ℝ is uncountable.

Proof. Diagonal argument. Note that we assume the existence of decimal expansions, which
we will prove later.

It turns out that S can be any of these:

• Finite, e.g., 1, 2, 3, 1, 2, 3,…⇒ S = {1, 2, 3}
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• Countable, e.g., 1, 1, 2, 1, 2, 3, 1, 2, 3, 4,…⇒ S = ℕ.

• Uncountable: pick a bijection � ∶ ℕ → ℚ. By density of ℚ, any real number is
approached by some sequence of rational numbers. So S = ℝ.

• Any non-empty, closed subset of ℝ.

2.3 Cauchy Sequences
De�nition 2.3.1. A sequence (xn) is Cauchy if

∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n,m > N ∶ |xn − xm| < �.

Recall that xn → L if
∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ |xn − L| < �.

This requires an explicit limit. Cauchy-ness, on the other hand, is an intrinsic property of (xn).
This is especially useful due to the following result:

Theorem 2.3.1. A sequence of real numbers converges in ℝ i� it is Cauchy.

Proof. (⇒): Let L be the limit and choose N such that n > N ⇒ |xn − L| < �/2. Then for any
n,m > N , we have

|xn − xm| = |xn − L + L − xm| ≤ |xn − L| + |xm − L| <

�

2

+

�

2

.

(⇐): Let � > 0 and choose N such that n,m > N ⇒ |xn − xm| < �. WLOG, suppose xn − xm < �

for all n,m > N . This gives us sup{xn | n ≥ k} ≤ � + xm because � + xm is an upper bound for
{xn | n ≥ k}, so lim sup(xn) ≤ � + xm.

Since m is arbitrary, we use the same argument to obtain lim sup(xn) − � ≤ lim inf(xn). So
lim sup(xn) − lim inf(xn) ≤ �. And since � can be arbitrarily small, we conclude lim sup(xn) =

lim inf(xn), so (xn) converges by Theorem 2.2.2.

Therefore, checking whether a sequence is Cauchy lets us check for convergence without a
candidate limit.

It turns out that convergent implies Cauchy for any ordered �eld—we didn’t use LUBP to show
the forward direction of Theorem 2.3.1.

The backward direction, though, is actually equivalent to LUBP; the result doesn’t hold without
it. Why? Take any sequence in ℚ that converges to an irrational number. Then it is Cauchy
(by density) but not convergent.

Indeed, our proof of the backward direction assumes the existence of sup{xn | n ≥ k}.

Proposition 2.3.1.

1. limn→∞ a
n
= 0 if |a| < 1

2. limn→∞ n
1/n
= 1

3. limn→∞ a
1/n
= 1 if a > 0
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Proof.

1. If |a| < 1, then |
1

a
| > 1, so |

1

a
| = 1 + b for b > 0. By the binomial expansion, (1 + b)n ≥ n ⋅ b.

Thus 0 ≤ |a|
n
≤

1

nb
⇒ |a|

n
→ 0 by the squeeze theorem.

2. It su�ces to show n
1/n
− 1 → 0. Denote the LHS by xn. Then, using the binomial

expansion,

n
1/n
= 1 + xn ⇒ n = (1 + xn)

n
≥

n(n − 1)

2

⋅ x
2

n
⇒ 1 ≥

n − 1

2

⋅ x
2

n
.

So 0 ≤ x2
n
≤

2

n−1
⇒ x

2

n
→ 0⇒ x

2

n
→ 0.

3. If a > 1, then 1 < a1/n < n1/n when n > a (which it is, since n → +∞). Then the previous
part implies a1/n → 1.

If a ≤ 1, then 1

a
≥ 1, so ( 1

a
)
1/n

→ 1⇒
1

a
1/n
→ 1⇒ a

1/n
→ 1.

Proposition 2.3.2. Let (an) be a sequence of nonzero real numbers. Then

lim inf

|
|
|
|

an+1

an

|
|
|
|

≤ lim inf |an|
1/n

≤ lim sup |an|
1/n

≤ lim sup

|
|
|
|

an+1

an

|
|
|
|

.

Proof. We will prove the rightmost inequality. Firstly, denote

� = lim sup |an|
1/n

� = lim sup

|
|
|
|

an+1

an

|
|
|
|

.

It su�ces to show � ≤ �1 for all �1 > � . Since �1 > lim sup |
an+1

an

|, there exists N such that
n > N ⇒ |

an+1

an

| < �1. Now take some n > N and note that

|an| =

|an|

|an−1|

⋅

|an−1|

|an−2|

⋅ ⋯ ⋅

|aN+1|

|aN |

⋅ |aN |.

Each term is less than �1 by construction, so |an| < �
n−N

1
⋅ |an| = �

n

1
⋅
|aN |

�
N

1

. This gives

|an|
1/n

< �1 ⋅
(

|aN |

�
N

1
)

1/n

⇒ lim sup |an|
1/n

≤ �1 ⋅ lim sup
(

|aN |

�
N

1
)

1/n

≤ �1.
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2.4 Series
De�nition 2.4.1. Let (an) be a sequence.

1. The n-th partial sum of (an) is de�ned recursively by s0 = a0 and sn+1 =

sn + an+1.

2. The in�nite series associated with (an) is the sequence (sn). We write
∑

n

k=0
ak = sn and ∑ ak = (sn) for the whole series.

If (sn) converges, we write ∑
∞

k=0
ak for its limit.

Proposition 2.4.1 (Cauchy Test). A series ∑ an converges i� for all � > 0, there
exists N such that n,m > N implies

|sn − sm| =

|
|
|
|
|

m

∑

k=n

sn

|
|
|
|
|

< �.

Proof. Apply Theorem 2.3.1 to (sn).

Proposition 2.4.2 (Silly Test). If ∑ an converges, then an → 0.

Proof. Apply the Cauchy Test with n = m.

Example 2.4.1. Consider the following series:

∑

n
2
+ 1

300n
2
+ 1000000n + 35 gazillion

.

It does not converge since its underlying sequence approaches 1/300, which fails
the contrapositive of the Silly Test.

Theorem 2.4.1 (Geometric Series). Let a ∈ ℝ. The series ∑∞

n=0
a
n

1. doesn’t converge if |a| ≥ 1

2. converges to 1

1−a
if |a| < 1.

Proof. If |a| ≥ 1, then an doesn’t converge to 0. We win by Silly Test.

Otherwise, we compute sn = 1 + a + a2 +⋯ + a
n as follows:

(1 − a)(1 + a + a
2
+⋯ + a

n
) = 1 + a + a

2
+⋯ + a

n
− (a + a

2
+ a

3
+⋯ + a

n+1
) = 1 − a

n+1
.

So sn = 1−a
n+1

1−a
. Since a < 1, this converges to 1

1−a
, as desired.

De�nition 2.4.2. A series ∑ an converges absolutely if ∑ |an| converges.

Proposition 2.4.3. If ∑ an converges absolutely, then it converges.
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Proof. By the Triangle Inequality,

|
|
|
|
|

m

∑

k=n

ak

|
|
|
|
|

≤

m

∑

k=n

|ak |

The result follows immediately from Cauchy.

Proposition 2.4.4. Let (an) be a sequence of non-negative reals. Then∑ an converges
i� its sequence of partial sums is bounded.

Proof. Observe that the sequence of partial sums is monotonic, then apply Proposition 2.1.11.

Theorem 2.4.2 (Comparison Test). Let (an) and (bn) be sequences of non-negative
reals. Assume an ≤ bn eventually. Then (an) converges if (bn) does.

Proof. Let N be such that an ≤ bn for n > N . Then, for m > n > N , we have

m

∑

i=n

ai ≤

m

∑

i=n

bi .

Apply Cauchy.

Example 2.4.2. Famous example: the harmonic series diverges by the Compari-
son Test.

Proposition 2.4.5 (Limit Comparison Test). Let (an) and (bn) be sequences of
non-negative reals. Assume lim sup

an

bn

≠ +∞. Then ∑ an converges if ∑ bn does.

Proof. Let c = lim sup
an

bn

. Let � > 0. There is N such that, for n > N , we have an

bn

< c + �. Then
an < (c + �)bn, and apply Comparison Test.

Corollary 2.4.1. Let (an) and (bn) be sequences of non-negative reals. Assume lim an

bn

exists and is a positive real number. Then ∑ an converges i� ∑ bn does.

Proof. Consider lim an

bn

and lim bn

an

.

Theorem 2.4.3 (Root Test). Let (an) be any sequence. Denote � = lim sup |an|
1/n.

1. If � < 1, then ∑ an converges absolutely.

2. If � > 1, then ∑ an diverges.

3. If � = 1, the test is inconclusive.

Proof. Assume � < 1. Then take �1 ∈ ℝ where � < �1 < 1. It is easy to show that there exists
N ∈ ℕ such that for n > N , we have |an|

1/n
< �1. Thus |an| < �

n

1
. Apply the Comparison Test

and convergence of geometric series.

Now assume � > 1. By a previous result, there is a subsequence |ank
|
1/nk converging to � . So

there is K such that for k > K , |ank | > 1, so |ank
| > 1. Thus an ̸→ 0. Apply Silly Test.
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Theorem 2.4.4 (Ratio Test). Let (an) be a sequence.

1. If lim sup |
an+1

an

| < 1, then ∑ an converges absolutely.

2. If lim sup |
an+1

an

| > 1, then ∑ an diverges.

3. Otherwise, the test is inconclusive.

Proof. By a previous result, we have

lim inf

|
|
|
|

an+1

an

|
|
|
|

≤ lim sup |an|
1/n

≤ lim sup

|
|
|
|

an+1

an

|
|
|
|

.

Apply the Root Test.

Lemma 2.4.1. Let a1 ≥ a2 ≥ ⋯ ≥ an ≥ ⋯ be a non-increasing sequence of
non-negative numbers. Then ∑ an converges i� ∑ 2

n
⋅ a2n does.

Proof. Consider
sn = a1 +⋯ + an

tn = a1 + 2a2 + 4a4 +⋯ + 2
k
ak .

We claim that if (tk) is bounded, then so is (sn). To show this, let n < 2k . Then

sn = a1 +⋯ + an

≤ a1 + (a2 + a3) + (a4 +⋯ + a7) +⋯ + (a
2
k +⋯ + a

2
k+1
−1
)

≤ a1 + 2a2 + 4a4 +⋯ + 2
k
a
2
k

= tk .

We also claim the converse is true:

sn = a1 +⋯ + an

≥ a1 + a2 + (a3 + a4) + (a5 +⋯ + a8) + (a2k−1−1 +⋯ + a
2k
)

≥

1

2

a1 + a2 + 2a4 + 4a8 +⋯ + 2
k−1
a
2
k

=

1

2

tk .

Now apply Proposition 2.4.4.

Theorem 2.4.5 (p-series Test).
∞

∑

n=1

1

n
p

converges i� p > 1.

Proof. If p ≤ 0, then 1

n
p
̸→ 0, and we are done by Silly Test. So assume p > 0. Apply the

previous lemma and consider

∑ 2
n
1

(2
n
)
p
= ∑ 2

n
⋅ 2

−np
= ∑(2

(1−p)
)
n
.

This is the geometric series and converges i� 21−p < 1; that is, if 1 − p < 0, or p > 1.
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Example 2.4.3. Here is an illustration of why the root and ratio tests can be
inconclusive:

∑

1

n

diverges lim
(

1

n
)

1/n

= 1 lim

1/(n + 1)

1/n

= 1

∑

1

n
2

converges lim
(

1

n
2)

1/n

= 1 lim

1/(n + 1)
2

1/n
2

= 1

It is also natural to ask about how we multiply series.

Proposition 2.4.6. Let ∑ an and ∑ bn be convergent series, at least one absolutely.
De�ne

cn =

n

∑

k=0

akbn−k = ∑

i,j

i+j=n

aibj .

Then ∑ cn converges and ∑ cn = (∑ an)(∑ bn).

Proof. WLOG, suppose ∑ an converges absolutely. Set An = ∑
n

i=0
ai , Bn = ∑

n

i=0
bi , Cn = ∑

n

i=0
ci

and write B = limBn and �n = B − Bn. Then

Cn = a0b0 + (a0b1 + a1b0) +⋯ + (a0bn + a1bn−1 +⋯ + anb0)

= a0Bn + a1Bn−1 +⋯ anB0

= a0(B + �n) + a1(B + �n−1) +⋯ + an(B + �0)

= An ⋅ B + a0�n +⋯ an�0.

Claim. n ∶= a0�n +⋯ an�0 → 0.

Admitting the claim, we see that Cn = An ⋅ B +  → A ⋅ B, as desired.

To prove it, write � = ∑
∞

n=0
|an| and choose � > 0. Since �n → 0, there is N such that |�n| < �

for n > N . Then we partition n at N :

|n| = |�0an +⋯ + �na0|

≤ |�0an +⋯ + �Nan−N | + |�N+1an−N−1 +⋯ + �na0|.

Note that the rightmost term is bounded above by � ⋅ � . Since an → 0, there is M such that
|an| < �/(|�0| +⋯ + |�n| for n > M . Thus, for n > N +M , we have

|n| ≤ |�0||an| +⋯ + |�N ||an−N | + � ⋅ � ≤ �(1 + �).

De�nition 2.4.3. ∑ an converges conditionally if it converges, but not abso-
lutely.

Theorem 2.4.6 (Alternating Series Test). Let (an) be a sequence such that:

• an ≥ an+1 ≥ ⋯ ≥ 0
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• an → 0.

Then ∑(−1)
n
an converges.

Proof. Note that
s2k = s2k−2 + (a2k − a2k−1) ≤ s2k−2

s2k−1 = s2k−3 + (a2k−2 − a2k−1) ≥ s2k−3

and that s2k = s2k−1 + a2k ≥ s2k−1. So s2k is non-increasing and bounded below by s1. Similarly,
s2k−1 is non-decreasing and bounded above by it, so both converge (to the same limit L, since
s2k − s2k−1 = a2k → 0).

Let � > 0, and choose K such that for k > K , we have |s2k − L| < �. Then, for n > 2k,
|sn − L| < �.

Example 2.4.4. ∑
(−1)

n

n
converges conditionally.

In fact, a family of conditionally convergent series follows from the p-series.

De�nition 2.4.4. A rearrangement of ∑ an is a series of the form ∑ af (n) for
some bijection f ∶ ℕ → ℕ.

Theorem 2.4.7. If ∑ an converges absolutely, so does any rearrangement, to the
same value.

Proof. Let L be the limit and take � > 0. Choose N such that for m ≥ n ≥ N ,

|
|
|
|
|

n

∑

k=0

ak − L

|
|
|
|
|

< �/2

m

∑

k=n

|ak | < �/2.

Then for M = max(f
−1
(0),… , f

−1
(N )) and m > M , so

|
|
|
|
|

n

∑

k=0

ak − L

|
|
|
|
|

=

|
|
|
|
|

m

∑

k=0

af (k) −

N

∑

k=0

ak +

N

∑

k=0

ak − L

|
|
|
|
|

≤

|
|
|
|
|

m

∑

k=0

af (k) −

N

∑

k=0

ak

|
|
|
|
|

+

|
|
|
|
|

N

∑

k=0

ak − L

|
|
|
|
|

<

∞

∑

k=N+1

|ak | + �/2 ≤ �.

The last step follows from the fact that f (m) > N , which implies that ∑N

k=0
ak is contained

entirely within ∑
m

k=0
af (k). Hence the di�erence is the sum from N + 1 to m, which is bound by

sending m to in�nity.

Theorem 2.4.8 (Riemann). Let ∑ an be conditionally convergent. Then there is a
rearrangement which:

• converges to any desired element of ℝ

• oscillates and doesn’t converge.
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Proof sketch. Let (a+
n
) and (a−

n
) be the subsequences of (an) consisting of positive and negative

terms, respectively. Then both approach 0 by the Silly Test.

Moreover, note that ∑ a
+

n
= +∞ and ∑ a

−

n
= −∞. We argue as follows. Suppose toward a

contradiction that both limits, denoted L+, L−, respectively, are in ℝ. Then ∑ |an| = L
+
− L

−
∈ ℝ

and (an) converges absolutely, a contradiction. If either L+ or L− diverges, their sum ∑ an does
too, another contradiction.

Now let L ∈ ℝ. Sum just enough of a+
n

until the sum exceeds L, then just enough until the sum
is less than L, and repeat. We can do this due to the claim shown above. Since a+

n
→ 0 and

a
−

n
→ 0, the distance between the sum and L goes to zero with each step.

To obtain a non-convergent rearrangement, choose L+ > L− ∈ ℝ and select terms so that the
positive ones always exceed the negative ones, or vice versa.
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3 Continuity and Di�erentiation

3.1 Continuity
De�nition 3.1.1. Let D ⊆ ℝ and take f ∶ D → ℝ and a ∈ D. Then f is
continuous at a if

∀� > 0 ∶ ∃� > 0 ∶ ∀x ∈ D ∶ |x − a| < � ⇒ |f (x) − f (a)| < �.

This de�nition says that we can arbitrarily bound variation in f around f (a) by bounding its
argument. So, for instance, constant functions are continuous because their variation is always
bounded.

Proposition 3.1.1. TFAE:

1. f is continuous at a

2. If xn ∈ D is a sequence converging to a ∈ D, then f (xn) converges to f (a).

Proof. (⇒): Let xn ∈ D converge to a and take � > 0. Let � be as in the de�nition of continuity
and take N such that n > N ⇒ |xn − a| < � . Then |f (xn) − f (a)| < � by continuity of f at a.

¬(⇒): Take � > 0 as above. For each n, apply with � =
1

n
to get xn ∈ D with |xn − a| <

1

n
and

|f (xn) − f (a)| ≥ �. Then xn → a and f (xn)9 f (a).

Corollary 3.1.1. If f , g ∶ D → ℝ are both continuous at a ∈ D, so are f + g, f − g,
f g, and f /g when g ≠ 0.

Proof. Follows immediately from the limit theorems and the previous proposition.

Corollary 3.1.2. If f ∶ S → T is continuous at a ∈ S and g ∶ T → ℝ is continuous
at b = f (a) ∈ T , then g ◦ f is continuous at a.

Proof. Let xn ∈ D and xn → a. Then f (xn)→ f (a), so (g ◦ f )(xn)→ (g ◦ f )(a).

De�nition 3.1.2. f ∶ D → ℝ is continuous if it is continuous at a for all a ∈ D.

Theorem 3.1.1. A continuous function f ∶ [a, b] → ℝ attains a minimum and
maximum. In other words, there exist x−, x+ ∈ [a, b] such that f (x−) ≤ f (x) ≤ f (x+)
for all x ∈ [a, b].

Proof. We will prove a series of claims—�rstly, that f is bounded; i.e., f ([a, b]) ⊆ ℝ is bounded.

Assume not. Then for each n ∈ ℕ, there is xn ∈ [a, b] such that |f (xn)| > n, implying that
limn→∞ |f (xn)| = +∞. By Bolzano-Weierstrass, there is a subsequence (xnk ) of (xn) which
converges. Let c be its limit. Then |f (xnk

)| → |f (c)|, contradiction.

So M+
∶= sup f ([a, b]) ∈ ℝ and M−

∶= inf f ([a, b]) ∈ ℝ. It remains to show that there exists
x+ ∈ [a, b] with f (x+) = M+.

For u ∈ ℕ⧵{0}, we know M+ − 1/u is not an upper bound for f ([a, b]), so there is xn ∈ [a, b]
with M+ ≥ f (xn) ≥ M+ −1/u. By Bolzano-Weierstrass, there is a subsequence (xnk ) converging to
some x+ ∈ [a, b]. Then f (x+) = limk→∞ f (xnk

), and M+ ≥ f (xnk
) ≥ M+ − 1/uk implies f (x+) = M+.
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An analogous argument on −f (x) gives x−.

Note that this theorem does not hold if the domain is open! Take f (x) = x on (0, 1). So where
in the proof did we assume that the domain is closed?

The answer is when we claimed that x+ ∈ [a, b]. That’s because x+ is an adherent point of
{xn | n ∈ ℕ} ⊂ [a, b] and we need to use that [a, b] is closed.

De�nition 3.1.3. Let D ⊂ ℝ and a ∈ ℝ. Then a is called:

• an adherent point of D if ∀� > 0 ∶ ∃x ∈ D ∶ |a − x | < �.

• a limit point of D if ∀� > 0 ∶ ∃x ∈ D ∶ 0 < |a − x | < �.

• an isolated point of D if ∃� > 0 ∶ ∀x ∈ D ∶ x ≠ a ⇒ |a − x | > �.

• an interior point of D if ∃� > 0 ∶ ∀x ∈ ℝ ∶ |a − x | < � ⇒ x ∈ D.

Example 3.1.1. • 0 is a limit point and adherent point of {1/n | n ∈ ℕ}, but
not isolated or interior.

• 1 is an adherent and isolated point of ℕ, but not limit or interior.

• 1/2 is a limit, adherent, and interior point of (0, 1), but not isolated.

De�nition 3.1.4. A subset D ⊂ ℝ is called

• open if every a ∈ D is interior to D.

• closed if every adherent a ∈ R lies in D.

Proposition 3.1.2. Let D ⊂ ℝ. Then D open ⇔ ℝ⧵D closed.

Proof. Fix a ∈ D.

a interior to D
⇔ ∃� > 0 ∶ (a − �, a + �) ⊂ D

⇔ ∃� > 0 ∶ (a − �, a + �) ∩ (ℝ⧵D) = ∅

⇔ a not adherent to ℝ⧵D

De�nition 3.1.5. Take D ⊂ ℝ. Then f ∶ D → ℝ is continuous if

∀y ∈ D ∶ ∀� > 0 ∶ ∃� > 0 ∶ ∀x ∈ D ∶ |x − y | < � ⇒ |f (x) − f (y)| < �.

De�nition 3.1.6. Take D ⊂ ℝ. Then f ∶ D → ℝ is uniformly continuous if

∀� > 0 ∶ ∃� > 0 ∶ ∀y ∈ D ∶ ∀x ∈ D ∶ |x − y | < � ⇒ |f (x) − f (y)| < �.

Proposition 3.1.3. Let f ∶ [0, 1]→ [0, 1] be continuous. Then f has a �xed point;
i.e., there is x0 ∈ [0, 1] such that f (x0) = x0.
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Proof. If f (0) = 0 or f (1) = 1, then we are done. Otherwise, we have f (0) > 0 and f (1) < 1. Now
de�ne g(x) = f (x) − x . We are now looking for a point at which g(x) = 0, which we can do
using IVT by noting that g(0) > 0 and g(1) < 0. The result follows.

Remark. This is the one-dimensional analog of the �xed-point problem in topol-
ogy: informally, no matter how you stir a cup of co�ee, there will always be one
molecule that has not moved.

We previously showed that f (x) = 1/x is continuous but not uniformly because it “explodes” at
x = 0. It turns out that some nice functions also do not qualify as uniformly continuous:

Claim. f (x) = x2 is continuous but not uniformly.

Proof. Note that |f (x) − f (y)| = |x
2
− y

2
| = |x − y | ⋅ |x + y | and suppose that |x − y | < � . Then

|x + y | can still explode if x, y can be arbitrarily large, as in the de�nition of uniform continuity,
so f is not uniformly continuous.

On the other hand, if we �x y and then choose |x − y | < � , like in the de�nition of continuity,
we can make |x − y | ⋅ |x + y | < � |x + y | arbitrarily small since x + y → 2y as x → y . Hence f is
continuous.

Proposition 3.1.4. Let f ∶ D → ℝ be uniformly continuous. If (xn) is a Cauchy
sequence in D, then f (xn) is also a Cauchy sequence.

Proof. Let � > 0. Take � > 0 such that |x −y | ⇒ |f (x)− f (y)| < �. Take N such that for n,m > N ,
|xn − xm| < � . Then |f (xn) − f (xm)| < �.

Remark. This result does NOT imply the following:

f uniformly continuous ⇔ (xn) Cauchy ⇔ (xn) continuous ⇔ f continuous

because the Cauchy-continuous biconditional only holds in ℝ.

Take, for instance, f (x) = 1/x on D = (0, 1) and xn = 1/n. We see that 1/n is Cauchy,
but f (xn) = n, which is obviously neither Cauchy nor convergent.

Moreover, the opposite direction of this result also fails. Consider f (x) = x2 on D =

ℝ, which sends Cauchy sequences to Cauchy sequences (since it sends sequences
convergent in ℝ to sequences convergent in ℝ). But we showed previously that it
is not uniformly continuous.

De�nition 3.1.7. Let D ⊂ D̃ ⊂ ℝ.

1. Given ̃
f ∶ D̃ → ℝ, the restriction of ̃

f to D is the function f ∶ D → ℝ

de�ned by f (x) = ̃
f (x) for all x ∈ D.

We write f = ̃
f |D .

2. Given f ∶ D → ℝ, an extension of f is a function ̃
f ∶ D̃ → ℝ such that

̃
f |D = f .

Note that we refer to “the” restriction of ̃
f to D and “an” extension of f because the restriction

of ̃
f to a given domain is uniquely determined, while many functions can extend f .
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Example 3.1.2. Let D = (0, 1) and D̃ = [0, 1]. Take f (x) = x and ̃
f1(x) = x .

Consider also ̃
f2 given by ̃

f2(x) = x for 0 < x < 1 and ̃
f2(x) = 1/2 for x = 0, 1. Both

̃
f1,

̃
f2 are perfectly valid extensions of f .

So extensions are not uniquely determined, but it seems like they are if we restrict
ourselves to continuous extensions.

De�nition 3.1.8. Let D ⊂ D̃ ⊂ ℝ. We say D is dense in D̃ if every point in D̃ is
an adherent point of D.

The point of this de�nition is to characterize D that might not have all the points in D̃, but are
such that we can approach any point in D̃ from within D. In some sense, D “knows” about all
the points in D̃.

We can check that ℚ is dense in ℝ—in the topological sense, but it turns out that this agrees with
our earlier de�nition of density. This is not necessarily the case with any pair of sets:

Example 3.1.3.

• (0, 1) is dense in [0, 1]

• ℤ is dense in ℤ

• ℤ is not dense in ℝ

• ℤ is not dense in 1

2
ℤ because we cannot approach any element in 1

2
ℤ using a

sequence of integers. But this disagrees with our earlier de�nition of density:
“between any two real numbers, you can �nd a rational number.”

Lemma 3.1.1. Let D ⊂ D̃ ∈ ℝ. Let f ∶ D → ℝ be a function. If D is dense in D̃,
then there is at most one continuous extension of f to D̃.

Proof. Let ̃
f1,

̃
f2 ∶ D̃ → ℝ be continuous extensions of f . Then ̃

f1(x) = f (x) =
̃
f2(x) for all

x ∈ D.

Let x0 ∈ D̃⧵D. Then x0 is a limit point of D i.e., there is a sequence (xn) in D with xn → x0.
Then

̃
f1(x0) = lim

n→∞

̃
f1(xn) = lim

n→∞

f (x)

̃
f2(x0) = lim

n→∞

̃
f2(xn) = lim

n→∞

f (x),

which are equal.

Remark. A continuous extension need not exist. Take D = ℝ⧵{0}, D̃ = ℝ, f (x) =

sin(1/x). Graphically, f is a sinusoidal function whose oscillations increase in
frequency near 0.

So a continuous extension of f does not exist, since we can pick an arbitrary value
for f (0), but the values of f (x) do not tend toward it (nor anything) as x → 0.

It is then natural to ask if we can easily identify whether a function has a continuous exten-
sion.

Proposition 3.1.5. A function f ∶ (a, b)→ ℝ has a continuous extension to [a, b]
i� it is uniformly continuous.
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Proof. If a continuous extension ̃
f ∶ [a, b]→ ℝ exists, then ̃

f is uniformly continuous, so f is
also.

Conversely, assume f is uniformly continuous. If ̃
f existed, then for any sequence (xn) where

xn ∈ (a, b) and xn → a, we would have ̃
f (a) = limn→∞

̃
f (xn) = limn→∞ f (xn).

Now let (xn) be a sequence in (a, b) with xn → a. Then we claim limn→∞ f (xn) exists. To show
this, note that since (xn) converges in ℝ, it is Cauchy. But because uniform continuity preserves
Cauchy-ness, (f (xn)) is Cauchy, hence convergent in ℝ.

Moreover, in this situation, we further clam that limn→∞ f (xn) is independent of (xn). Take
(xn), (yn) such that xn → a and yn → a. Then construct (zn) as z2n = xn, z2n+1 = yn; this gives
zn → a, so f (zn)→ a. But (f (xn)), (f (yn)) are subsequences of (f (zn)), so they are equal.

De�ne ̃
f (a) = limn→∞ f (xn) for any sequence (xn) with xn ∈ (a, b) and xn → a. Then ̃

f (a) is
well-de�ned; it remains to show ̃

f is continuous at a.

Assume not. Then there exists (xn) with xn ∈ (a, b) and xn → a but ̃
f (xn) ↛

̃
f (a). That is,

we can �nd � > 0 such that for all N , there exist n > N with |
̃
f (xn) −

̃
f (a)| ≥ �. So there

is a subsequence (xnk) such that | ̃f (xnk) − ̃
f (a)| ≥ �. In particular, ̃f (xnk) = f (xnk) ̸→

̃
f (a), a

contradiction.

3.2 Limits of Functions
So far, we have discussed limits of sequences x ∶ ℕ → ℝ. Now we want to discuss functions
f ∶ D → ℝ for any D ⊂ ℝ, and consider limits toward any a ∈ ℝ.

De�nition 3.2.1. Let f ∶ D → ℝ be a function and take a limit point a ∈ ℝ of D.
Let L ∈ ℝ. We de�ne limx→a f (x) = L to mean:

∀� > 0 ∶ ∃� > 0 ∶ ∀x ∈ D ∶ 0 < |x − a| < � ⇒ |f (x) − L| < �.

Note that a need not be in D and we don’t allow x = a.

Example 3.2.1. De�ne the following:

f (x) =

{

0 x ≠ 0

1 x = 0.

Then limx→0 f (x) = 0. Alternatively, consider

f (x) =

{

0 x < 0

1 x > 0.

Now the limit at 0 does not exist.

Using the fact that the de�nition of the limit resembles that of continuity, we see immediately
that if f ∶ D → ℝ is a function and a ∈ D is a limit point, then TFAE:

• f is continuous at a

• limx→a f (x) = f (a)
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Proposition 3.2.1. TFAE:

1. limx→a f (x) = L

2. For any sequence (xn) in D⧵{a} and xn → a, we have f (xn)→ L

Proof. (1)⇒ (2): Let � > 0. Take � > 0 as in the de�nition of limit. Take N such that for n > N ,
we have |xn − a| < � . Then |f (xn) − L| < �.

¬(1)⇒ ¬(2): There exists � > 0 such that for all � > 0, there is x ∈ D such that 0 < |x − a| < �

and |f (x) − L| ≥ �. Choose � = 1/n for 0 ≠ n ∈ ℕ to get a sequence (xn), xn ∈ D⧵{a} where
xn → a and f (xn) ↛ L.

Corollary 3.2.1. Let f1, f2 ∶ D → ℝ, a ∈ ℝ a limit point of D, and Li = limx→a fi(x)

for i = 1, 2. Then
lim
x→a

(f1(x) + f2(x)) = L1 + L2

lim
x→a

(f1(x) − f2(x)) = L1 − L2

lim
x→a

(f1(x) ⋅ f2(x)) = L1 ⋅ L2

lim
x→a

(f1(x)/f2(x)) = L1/L2 if L2 ≠ 0.

Proof. Apply Proposition 3.2.1 and sequence limit theorems.

Corollary 3.2.2. Let f ∶ D → E ⊂ ℝ and g ∶ E → ℝ. If a ∈ ℝ is a limit point of
D and limx→a f (x) = b ∈ E, then

lim
x→a

(g ◦ f )(x) = g(b).

Proof. Apply Proposition 3.2.1 and the analogous result for sequence limits.

Moreover, based on our proof of Proposition 3.1.5, if we take f ∶ D → ℝ and a limit point
a ∈ ℝ⧵D of D, then f has a continuous extension ̃

f to D̃ ∶= D ∪ {a} i� limx→a f (x) = L exists
and ̃

f (a) = L.

De�nition 3.2.2. Let f ∶ D → ℝ, a ∈ ℝ being a limit point of D. We say

lim

x↑a

f (x) = L⇔ ∀� > 0 ∶ ∃� > 0 ∶ ∀x ∈ D ∶ a − � < x < a ⇒ |f (x) − L| < �

lim

x↓a

f (x) = L⇔ ∀� > 0 ∶ ∃� > 0 ∶ ∀x ∈ D ∶ a < x < a + � ⇒ |f (x) − L| < �.

Combining the constraints on x , we get

lim
x→a

= L⇔ lim

x↑a

f (x) = L = lim

x↓a

f (x).

Example 3.2.2. Recall this example:

f (x) =

{

0 x < 0

1 x > 0.

We have lim
x↑0

= 0 ≠ 1 = lim
x↓0

, so the limit at 0 does not exist.
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3.3 Di�erentiation
The motivation for di�erentiation begins with us considering the most basic type of func-
tion:

De�nition 3.3.1. An a�ne linear function is of the form f (x) = ax + b for
a, b ∈ ℝ.

It is very easy to understand—it contains exactly two pieces of information: its rate of change
and its value at 0.

The point of di�erentiation is any function looks like an a�ne linear function if we look
“closely enough” around a given point. Intuitively, we say that a function f ∶ (a, b) → ℝ

is di�erentiable at c ∈ (a, b) if there exists an a�ne linear function L ∶ ℝ → ℝ such that
f (x) ≈ L(x) for x close to c.

That is, f (x) = L(x) + e(x), where e ∶ (a, b)→ ℝ satis�es

e(c) = 0 lim
x→c

e(x)

x − c

= 0.

We say that e vanishes at c superlinearly. (x − c)2 vanishes quadratically at c, and (x − c)n

vanishes to the order of n at c.

In other words, the linear behavior of f at c is fully captured at L. The rate of change of L is
called the in�nitesimal rate of change of f at c.

Now it is natural to ask:

Question. How can we check if an arbitrary f has this property?

Proposition 3.3.1. Let f ∶ (a, b)→ ℝ and c ∈ (a, b). TFAE:

1. There exists an a�ne linear function L ∶ ℝ → ℝ such that e(x) = f (x) − L(x)
satis�es e(c) = 0 and e vanishes superlinearly.

2. limx→c

f (x)−f (c)

x−c
=∶ f

′
(c) exists.

In that case, L is uniquely determined by L(x) = f (c) + f ′(c)(x − c).

Proof. (1)⇒ (2):

lim
x→c

f (x) − f (c)

x − c

= lim
x→c

(L(x) + e(x)) − (L(c) + e(c))

x − c

= lim
x→c

L(x) − L(c)

x − c

+ lim
x→c

e(x)

x − c

.

The �rst term is constant in x , and the second term is 0 by construction.

(2)⇒ (1): De�ne L(x) = f (x) + f ′(c)(x − c). Then e(x) = f (x) − L(x) satis�es

e(c) = f (c) − L(c) = f (c) − (f (c) + f
′
(c)(c − c)) = 0

and

lim
x→c

e(x)

x − c

= lim
x→c

f (x) − f (c) − f
′
(c)(x − c)

x − c

= lim
x→c

f (x) − f (c)

x − c

− lim
x→c

f
′
(c)

x − c

x − c

.

The �rst term is, by de�nition, f ′(c), and the second term is limx→c f
′
(c) = f

′
(c). So the whole

expression is 0.
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To prove uniqueness of L, let L ∶ ℝ → ℝ be an arbitrary linear function satisfying (1). Then
L(c) = f (c) − e(c) = f (c). We write

L(x) − L(c)

x − c

= lim
x→c

L(x) − L(c)

x − c

= lim
x→c

(f (x) − e(x)) − (f (c) − e(c))

x − c

= lim
x→c

f (x) − f (c)

x − c

− lim
x→c

e(x)

x − c

= f
′
(c).

De�nition 3.3.2. A function f ∶ (a, b) → ℝ is di�erentiable at c ∈ (a, b) if it
satis�es the equivalent conditions above.

In other words, f is di�erentiable at c i� f (x) = f (c) + f
′
(c)(x − c) + e(x) and e(x) vanishes

superlinearly at c.

Proposition 3.3.2. If f is di�erentiable at c, then f is continuous at c.

De�nition 3.3.3.

lim
x→c

(f (x)− f (c)) = lim
x→c

f (x) − f (c)

x − c

(x − c) = lim
x→c

f (x) − f (c)

x − c

⋅ lim
x→c

(x − c) = f
′
(c) ⋅0 = 0.

So f is continuous at c.

Proposition 3.3.3. Let f , g ∶ (a, b) → ℝ be di�erentiable at c. Then so are
f + g, f g, f /g if g ≠ 0. Moreover,

1. (f + g)′(c) = f ′(c) + g′(c)

2. (f g)′(c) = f ′(c)g(c) + f (c)g′(c)

3. (f /g)(c) = f
′
(c)g(c)−f (c)g

′
(c)

g(c)
2

Proof.

1.

lim
x→c

(f + g)(x) − (f + g)(c)

x − c

= lim
x→c

f (x) − f (c) + g(x) − g(c)

x − c

= lim
x→c

f (x) − f (c)

x − c

+ lim
x→c

g(x) − g(c)

x − c

.

2.

lim
x→c

(f g)(x) − (f g)(c)

x − c

= lim
x→c

f (x)g(x) − f (c)g(x) + f (c)g(x) + f (c)g(c)

x − c

lim
x→c

f (x) − f (c)

x − c

g(x) + lim
x→c

g(x) − g(c)

x − c

f (x).

Note that limx→c g(x) = g(c) because g is continuous (since it is di�erentiable). The
result follows immediately.

3. By (2), we can assume f (x) = 1. Then

lim
x→c

1/g(x) − 1/g(c)

x − c

= lim
x→c

g(c) − g(x)

g(x)g(c)(x − c)

= −

g
′
(c)

g(c)
2
.
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Corollary 3.3.1. A polynomial function f (x) = anxn+an−1xn−1+⋯+a0 for an,… , a0 ∈

ℝ is di�erentiable at any c ∈ ℝ and f ′(c) = an ⋅ ncn−1 + an−1 ⋅ (n − 1)cn−2 +⋯ + a1.

Proof. Since the derivative respects arithmetic, it is enough to treat the special cases f (x) = a0
and f (x) = xn. In the �rst case, we simply have f ′(x) = 0.

To show the second case, we induce on n. For n = 1, we have limx→c

x−c

x−c
= 1. For general n,

write f (x) = x ⋅ x
n−1 so f

′
(c) = 1 ⋅ c

n−1
+ c ⋅ (n − 1) ⋅ c

n−1
= c

n−1
+ (n − 1)c

n−1
= n ⋅ c

n−1 by the
product rule.

Proposition 3.3.4 (Chain rule). Let f1 ∶ (a1, b1)→ (a2, b2) ⊂ ℝ and f2 ∶ (a2, b2)→
ℝ. Assume f1 is di�erentiable at c1 ∈ (a1, b1) and f2 is di�erentiable at c2 = f1(c1).
Then f2 ◦ f1 is di�erentiable at c1 and

(f2 ◦ f1)
′
(c) = f

′

2
(c2) ⋅ f

′

1
(c1)

= f
′

2
(f1(c1)) ⋅ f

′

1
(c1).

Proof. De�ne

g(y) =

{
f2(y)−f2(c2)

y−c2

y ≠ c2

f
′
(c2) y = c2

.

Then, by the de�nition of the derivative, limy→c2
g(y) = g(c2), so g is continuous at c2. Now we

write
f2(f1(x)) − f2(f1(c1))

x − c1

= g(f1(x)) ⋅

f1(x) − f1(c1)

x − c1

.

Why is this true? Suppose we pick x such that f1(x) ≠ f1(c1). Then g(f1(x)) takes the �rst case
and we have

f2(f1(x)) − f2(f1(c1))

x − c1

=

f2(y) − f2(c2)

y − c2

⋅

f1(x) − f1(c1)

x − c1

=

f2(y) − f2(c2)

x − c1

.

If f1(x) = f1(c1), then the equality collapses to 0 = 0.

Now we take the limit as x → c1 on the left to obtain (f2 ◦ f1)′(c) and do the same on the right:

lim
x→c1(

g(f1(x)) ⋅

f1(x) − f1(c1)

x − c1
)

= lim
x→c1

g(f1(x)) ⋅ lim
x→c1

f1(x) − f1(c1)

x − c1

.

The left limit exists because it equals g(f1(c1)) by continuity of g, f1 at c1, and the right limit
exists by di�erentiability of f1 at c1.

But then the product simply reduces to g(f1(c1))f ′1 (c1), as desired.
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3.4 Properties of the Derivative
Before we proceed, let’s recall some intuition for the derivative.

Analytically, we can think of f ′(c) as the in�nitesimal rate of change of f at c; that is, if y = f (x),
x − c = Δx , and f (x) − f (x) = Δy , then f ′(c) = limΔx→0

Δy

Δx
.

Geometrically, we can �x some x and compute the di�erence quotient f (x)−f (c)

x−c
as the slope of

the secant line x − c through (c, f (c)) and (x, f (x)). As we take the limit x → c, the secant lines
approach the tangent line, so f ′(c) is the slope of the tangent line.

We start with the following question:

Question. We know that if f ∶ (a, b) → ℝ is constant, then f
′
(c) = 0 for all

c ∈ (a, b). Does the converse hold?

De�nition 3.4.1. Let f ∶ (a, b)→ ℝ and c ∈ (a, b). Then c is:

• a local minimum if ∃� > 0 ∶ ∀x ∈ (c − �, c + �) ∶ f (x) ≥ f (c)

• a local maximum if ∃� > 0 ∶ ∀x ∈ (c − �, c + �) ∶ f (x) ≤ f (c)

• a local extremum if either.

Proposition 3.4.1. Assume f ∶ (a, b) → ℝ is di�erentiable at c. If c is a local
extremum, then f ′(c) = 0.

Proof. Assume not. Say WLOG that f ′(c) > 0. Then choose 0 < � < f ′(c) and let � > 0 be such
that for 0 < |x − c| < � ,

|
|
|
|

f (x) − f (c)

x − c

− f
′
(c)

|
|
|
|

< �,

or, equivalently,

0 < f
′
(c) − � <

f (x) − f (c)

x − c

< f
′
(c) + �.

Thus, for c < x < c + � , we have

f (x) > f (c) + (f
′
(c) − �)(x − c) > f (c),

because f ′(c) − � > 0 and x − c > 0. For c − � < x < c, we have

f (x) < f (c) + (f
′
(c) − �)(x − c) < f (c),

because f ′(c) − � > 0 again but x − c < 0. Hence c is neither a local min nor a local max,
contradiction.

De�nition 3.4.2. A function f ∶ (a, b) → ℝ is called di�erentiable if it is
di�erentiable at every c ∈ (a, b).

This gives us a new function f ′ ∶ (a, b)→ ℝ!

Corollary 3.4.1 (Rolle’s theorem). Let f ∶ [a, b]→ ℝ be continuous, and suppose
f is di�erentiable on (a, b). If f (a) = f (b), then there exists c ∈ (a, b) such that
f
′
(c) = 0.
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Proof. f attains its min and max at x−, x+ ∈ [a, b]. If {x−, x+} ⊆ {a, b}, then f (x−) = f (x+), so f
is constant and f ′ = 0. Otherwise, let c = x− or c = x+, whichever lies in (a, b), and apply the
previous result.

Theorem 3.4.1 (Mean value theorem). Let f ∶ [a, b] → ℝ be continuous, and
suppose it is di�erentiable on (a, b). There exists c ∈ (a, b) such that f (b)−f (a)

b−a
= f

′
(c).

Proof. We tilt our heads and apply Rolle. More precisely, let L ∶ ℝ → ℝ be an a�ne linear
function whose graph is the secant line for a, b; that is,

L(x) =

f (b) − f (a)

b − a

(x − a) + f (a)

and let ℎ(x) = f (x) − L(x). Then

ℎ(a) = f (a) − L(a) = 0

ℎ(b) = f (b) − L(b) = 0.

By Rolle, there is c ∈ (a, b) such that

0 = ℎ
′
(c) = f

′
(c) −

f (b) − f (a)

b − a

.

Corollary 3.4.2. Let f ∶ [a, b]→ ℝ be continuous, di�erentiable on (a, b).

1. If f ′(c) > 0 for all c ∈ (a, b), then f is strictly increasing.

2. If f ′(c) < 0 for all c ∈ (a, b), then f is strictly decreasing.

3. If f ′(c) = 0 for all c ∈ (a, b), then f is constant.

Proof. For any x1, x2 ∈ [a, b] where x1 < x2, there exists by MVT some x1 < c < x2 such that
f (x2) − f (x1) = f

′
(c)(x2 − x1).

De�nition 3.4.3. Let f ∶ I → ℝ be a function de�ned on an open interval. An
antiderivative of f is a di�erentiable function F ∶ I → ℝ such that F ′ = f .

Proposition 3.4.2. Let F1, F2 ∶ I → ℝ be antiderivatives of the same f ∶ I → ℝ.
Then there exists C ∈ ℝ such that F2(x) = F1(x) + C for all x ∈ I .

Proof. By construction of F1, F2, we can write F
′

1
− F

′

2
= 0 ⇒ (F1 − F2)

′
= 0, so F1 − F2 is

constant.

This means that, if it exists, an antiderivative is almost completely uniquely determined.

Corollary 3.4.3. Let I be an open interval and f ∶ I → ℝ di�erentiable. If
f
′
∶ I → ℝ is bounded, then f is uniformly continuous.

Proof. Let M ∈ ℝ be such that |f ′(x)| ≤ M for all x ∈ I . By MVT, for any x, y ∈ I , there is z ∈ I
such that |f (x) − f (y)| = |f

′
(z)| ⋅ |x − y | ≤ M ⋅ |x − y |. Thus, for any � > 0, we can take � = �/M ,

and we are done.
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Example 3.4.1. Consider f (x) = 1/x2, which has f ′(x) = −2/x . The derivative is
bounded on (1,∞), so f is uniformly continuous on the same interval.

Note that the converse is not true; there are uniformly continuous functions with unbounded
derivatives.
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4 Integration

4.1 The Riemann Integral
We want a conceptual understanding of area, and we get there by a conceptual understanding
of the area “under the graph of a function.” This leads us to the following questions:

Question.

1. How do we make this precise?

2. For what functions does this work?

3. What properties does this procedure have?

Denote the area under a function f from a to b by ∫
b

a
f (x)dx . Let’s start with some immediate

observations.

1. If f (x) = k ∈ ℝ is constant, then

∫

b

a

f (x)dx = (b − a)k.

2. For any f1, we have

∫

b

a

f (x)dx =
∫

c

a

f (x)dx +
∫

b

c

f (x)dx.

So we know how to integrate constant and step (piecewise constant) functions.

De�nition 4.1.1.

1. A partition of [a, b] is a �nite sequence P where a = aP
0
≤ a

P

1
≤ ⋯ ≤ a

P

n
= b

for n = |P |.

2. A partition Q re�nes P if

{a
P

0
,… , a

P

|P |
} ⊆ {a

Q

0
,… , a

Q

|Q|
}.

3. A step function adapted to P is a function ℎ ∶ [a, b] → ℝ such that
ℎ|
(a
P

i
,a
P

i+1
)
is constant for all i = 0,… , |P | − 1.

4. A step function is a function ℎ ∶ [a, b] → ℝ such that there exists a
partition P satisfying 3).

We specify an open interval for 3) because it’s arbitrary which “step” we pick on the boundary
of a partition.

De�nition 4.1.2. If ℎ is a step function adapted to P , then

∫
P

ℎ(x)dx ∶=

|P |−1

∑

i=0

(a
P

i+1
− a

P

i
) ⋅ ℎ

(

a
P

i
+ a

P

i+1

2 )
.
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Remark. The values of ℎ at aP
i

are irrelevant because of the point above and
because always we sample ℎ between two partition boundaries.

It follows immediately that if Q is a re�nement of P , then

∫
P

ℎ(x)dx =
∫
Q

ℎ(x)dx.

Note also that any two partitions have a common re�nement—simply take their union. This
gives us the following:

Corollary 4.1.1. Let ℎ be a step function adapted to two partitions P1, P2. Then

∫
P1

ℎ(x)dx =
∫
P2

ℎ(x)dx.

Proof. See above.

De�nition 4.1.3. Let ℎ ∶ [a, b]→ ℝ be a step function. De�ne

∫

b

a

ℎ(x)dx =
∫
P

ℎ(x)dx

where P is any partition to which ℎ is adapted.

Lemma 4.1.1. If ℎ1, ℎ2 ∶ [a, b] → ℝ are step functions and ℎ1 < ℎ2 (that is,
ℎ1(x) ≤ ℎ2(x)) for all x ∈ [a, b], then

∫

b

a

ℎ1(x)dx ≤
∫

b

a

ℎ2(x)dx.

Proof. Take partitions for ℎ1, ℎ2 and �nd a common re�nement. Apply De�nition 4.1.2 and
De�nition 4.1.3

Now we try to approximate general functions using re�nement of partitions.

De�nition 4.1.4. Let f ∶ [a, b]→ ℝ be bounded.

1. US(f ) = {ℎ ∶ [a, b]→ ℝ | ℎ step and ℎ ≥ f }

2. LS(f ) = {ℎ ∶ [a, b]→ ℝ | ℎ step and ℎ ≤ f }

3.

∫

b

a

f (x)dx ∶= inf

{

∫

b

a

ℎ(x)dx | ℎ ∈ US(f )

}

.

∫

b

a

f (x)dx ∶= sup

{

∫

b

a

ℎ(x)dx | ℎ ∈ LS(f )

}

.

We call these the upper and lower integrals of f , respectively.
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Lemma 4.1.2.

+∞

(1)

> (b − 1) sup f ([a, b])

(2)

≥
∫

b

a

f (x)dx

(3)

≥
∫

b

a

f (x)dx

(4)

≥ (b − a) inf f ([a, b])

(5)

> −∞.

Proof. By assumption, f is bounded, so (1) and (5) follow.

Also note that
ℎ2(x) ∶= sup f ([a, b]) ∈ US(f )

ℎ1(x) ∶= sup f ([a, b]) ∈ LS(f ),

which gives (2) and (4).

Now de�ne

us(f ) =

{

∫
ℎ(x)dx | ℎ ∈ US(f )

}

ls(f ) =

{

∫
ℎ(x)dx | ℎ ∈ LS(f )

}

.

Note that ℎ2 ∈ US and ℎ1 ∈ LS, so ℎ1 ≤ f ≤ ℎ2, so ls(f ) ≤ us(f ). It is easy to show that, for
A, B ⊂ ℝ, we have A ≤ B ⇒ supA ≤ inf B. Hence

∫

b

a

f (x)dx = inf us(f ) ≥ sup ls(f ) =
∫

b

a

f (x)dx.

De�nition 4.1.5. A bounded f ∶ [a, b]→ ℝ is called Riemann integrable if

∫

b

a

f (x)dx =
∫

b

a

f (x)dx.

We denote this value by ∫
b

a
f (x)dx .

At this point in the class, Kaletha paused to check in on us:

How do you feel? I will give you some options: “I feel happy, sad, lost, distraught,
confused, tormented, devastated...”

4.2 Properties of the Riemann Integral
Now we are probably inclined to ask:

Question. Which functions are Riemann integrable?

Lemma 4.2.1. Any step function is Riemann integrable; moreover, De�nition 4.1.2
and De�nition 4.1.5 agree.
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Proof. Let ℎ be a step function. Then max LS(ℎ) = ℎ = minUS(ℎ). So

∫

b

a

ℎ(x)dx =
∫

b

a

ℎ(x)dx =
∫

b

a

ℎ(x)dx.

Example 4.2.1. Consider the function

f (x) =

{

1 x ∈ ℚ

0 x ∉ ℚ

on [0, 1]. Note thatminUS(f ) = 1 ≠ 0 = max LS(f ). So f is not Riemann integrable.

Lemma 4.2.2. For bounded f ∶ [a, b]→ ℝ, TFAE:

1. f is Riemann integrable

2. For � > 0, there exist step functions ℎ1 ≤ f ≤ ℎ2 such that

∫

b

a

ℎ2(x)dx − ∫

b

a

ℎ1(x)dx < �.

Proof. 1)⇒ 2): De�ne I ∶= ∫
b

a
f (x)dx ∈ ℝ. Then I − �/2 is not an upper bound for ls(f ). Thus

there exists ℎ1 ∈ LS(f ) such that

∫

b

a

ℎ1(x)dx > I − �/2.

Similarly, I + �/2 is not a lower bound for us(f ), so there exists ℎ2 ∈ US(f ) such that

∫

b

a

ℎ2(x)dx < I + �/2.

Now, because ℎ1 ≤ f ≤ ℎ2,

∫

b

a

ℎ2(x)dx − ∫

b

a

ℎ1(x)dx < (I + �/2) − (I − �/2) = �.

2)⇒ 1): Fix �. Let ℎ1 ≤ f ≤ ℎ2; then

0 ≤
∫

b

a

f (x)dx −
∫

b

a

f (x)dx ≤
∫

b

a

ℎ2(x)dx − ∫

b

a

ℎ1(x)dx < �.

Theorem 4.2.1. Any continuous f ∶ [a, b]→ ℝ is Riemann integrable.

Proof. Fix � > 0. By a previous result, f is uniformly continuous. Now choose � > 0 such that
for |x − y | < �, we have |f (x) − f (y)| < �/(b − a).
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By Archimedian Property, there is n ∈ ℕ where n > 1/� . De�ne P ∶ aP
i
= a + i ⋅

b−a

n
. Then

ℎ2|(aP
i
,a
P

i+1
)
= sup f ([a

P

i
, a

P

i+1
]) = f (Mi)

ℎ1|(aP
i
,a
P

i+1
)
= inf f ([a

P

i
, a

P

i+1
]) = f (mi)

for mi , Mi ∈ [a
P

i
, a

P

i+1
]. We then write

∫

b

a

ℎ2(x)dx − ∫

b

a

ℎ1(x)dx =

|P |−1

∑

i=1

(a
P

i+1
− a

P

i
)(f (Mi) − f (mi)) < �/(b − a) < �.

Theorem 4.2.2. If f ∶ [a, b]→ ℝ is bounded and monotonic, then f is integrable.

Proof. WLOG, assume f is non-decreasing. Let � > 0 and n ∈ ℕ such that

(f (b) − f (a)) ⋅ (b − a)/� < n

by Archimedian property. Let P be the equi-spaced partition a
P

i
= a + i ⋅

b−a

n
. De�ne step

functions
ℎ1|(aP

i
,a
P

i+1
)
= f (a

P

i
)

ℎ2|(aP
i
,a
P

i+1
)
= f (a

P

i+1
).

Then ℎ1 ≤ f ≤ ℎ2 and

∫

b

a

ℎ2(x)dx − ∫

b

a

ℎ1(x)dx

=

n−1

∑

i=1

(a
P

i+1
− a

P

i
)(f (a

P

i+1
) − f (a

P

i
))

=

b − a

n

n−1

∑

i=1

(f (a
P

i+1
) − f (a

P

i
)) =

b − a

n

(f (b) − f (a)) < �.

Theorem 4.2.3. Let f , g ∶ [a, b]→ ℝ be integrable. Then

1. f + g is also integrable and

∫

b

a

f (x) + g(x)dx =
∫

b

a

f (x)dx +
∫

b

a

g(x)dx.

2. If k ∈ ℝ then k ⋅ f is integrable and

∫

b

a

k ⋅ f (x)dx = k ⋅
∫

b

a

f (x)dx.

3. If f ≤ g then

∫

b

a

f (x)dx ≤
∫

b

a

g(x)dx.
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4. If c ∈ (a, b), then

∫

b

a

f (x)dx =
∫

c

a

f (x)dx +
∫

b

c

f (x)dx.

5. If m ≤ f ≤ M with m,M ∈ ℝ, then

(b − a)m ≤
∫

b

a

f (x)dx ≤ (b − a)M.

Proof.

1. Let � > 0. There exist step functions ℎ1, ℎ2, ℎ3, ℎ4 such that ℎ1 ≤ f ≤ ℎ2 and ℎ3 ≤ g ≤ ℎ4
and ∫ ℎ2 − ∫ ℎ1 < �/2 and ∫ ℎ4 − ∫ ℎ3 < �/2.

Then ℎ1 + ℎ3 and ℎ2 + ℎ4 are step functions (exercise) and ℎ1 + ℎ3 ≤ f + g ≤ ℎ2 + ℎ4. We
can write

∫
ℎ4 + ℎ2 − ∫

ℎ3 + ℎ1 = ∫
ℎ4 − ∫

ℎ3 + ∫
ℎ2 − ∫

ℎ1 < �/2 + �/2 = �,

which is not circular because ℎ4 + ℎ2 and ℎ3 + ℎ1 are step functions. So f + g is integrable
by Lemma 4.2.2.

Now to show the addition property, it is easy to see LS(f )+LS(g) ⊆ LS(f +g). This implies
ls(f ) + ls(g) ⊆ ls(f + g). Using basic properties of sup, we have sup ls(f ) + sup ls(g) ≤
sup ls(f + g). Hence

∫

b

a

f (x)dx +
∫

b

a

g(x)dx ≤
∫

b

a

f (x) + g(x)dx.

Since f , g, f + g are integrable, we conclude

∫

b

a

f (x)dx +
∫

b

a

g(x)dx ≤
∫

b

a

(f (x) + g(x))dx.

Now, using US and ∫ , we get the opposite inequality.

2. “Similar, but easier.”

3. By 1) and 2), it is enough to show

f ≥ 0⇒
∫

b

a

f (x)dx ≥ 0.

But f ≥ 0⇒ 0 ∈ LS(f ), so

0 ≤
∫

b

a

f (x)dx =
∫

b

a

f (x)dx.

4. Note LS(f ) = LS(f |[a,c]) + LS(f |[c,b]), which implies ls(f ) = ls(f |[a,c]) + ls(f |[c,b]) and
sup ls(f ) = sup ls(f |[a,c]) + sup ls(f |[c,b]). Hence

∫

b

a

f (x)dx =
∫

c

a

f (x)dx +
∫

b

c

f (x)dx,

and the result follows by integrability.
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5. Apply 3) to m ≤ f ≤ M .

Remark. In 1), we subtly use the fact that the integral respects addition of step
functions. This is immediate if we take a common re�nement of the partitions of
both integrals.

Lemma 4.2.3. If f ∶ [a, b]→ ℝ is continuous, then

|
|
|
|
|

∫

b

a

f (x)dx

|
|
|
|
|

≤
∫

b

a

|f (x)|dx.

Proof. Note that −|f | ≤ f ≤ |f |. Apply 3) from Theorem 4.2.3.

If we accept without proof that the composition of a continuous and integrable function is
itself integrable, then the result further holds whenever f is integrable.

4.3 The Fundamental Theorem of Calculus
Question. We already know that f ∶ [a, b]→ ℝ is integrable. Can we compute
∫
b

a
f (x)dx e�ciently?

Theorem 4.3.1 (Fundamental theorem of calculus). Let f ∶ [a, b]→ ℝ be inte-
grable. De�ne F (x) = ∫

x

a
f (t)dt .

Then F is uniformly continuous. If f is continuous at c ∈ (a, b), then F is di�erentiable
at c and F ′(c) = f (c).

Proof. Let x, y ∈ [a, b] and x < y. Then

|F (y) − F (x)| =

|
|
|
|
∫

y

x

f (t)dt

|
|
|
|

≤
∫

y

x

|f (t)|dt ≤ |y − x | ⋅ sup |f ([a, b])|.

So F is uniformly continuous.

Now assume f is continuous at c. Let � > 0. Choose � > 0 such that |t −c| < � ⇒ |f (t)−f (c)| < �.
Then

|
|
|
|

F (x) − F (c)

x − c

− f (c)

|
|
|
|

=

|
|
|
|

1

x − c
∫

x

c

f (t)dt − f (c)

|
|
|
|

=

|
|
|
|

1

x − c
∫

x

c

(f (t) − f (c))dt

|
|
|
|

≤

1

|x − c|
∫

x

c

|f (t) − f (c)|dt

≤

1

|x − c|
∫

x

c

�dt = �

when |x − c| < � .

Recall that G is an antiderivative of f if G′
= f . We showed already that G is unique up to the

addition of a constant. And if f is continuous, FTC shows that an antiderivative exists.
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Importantly, the concept of the antiderivative is, a priori, totally independent of integration.
Integrals compute area; the antiderivative asks if a given function came from di�erentiating
another function.

This is why the FTC is signi�cant. Integrals aren’t inherently antiderivatives, like we are
taught in high school—the FTC shows in hindsight that the two are related. The following
example shows this:

Example 4.3.1. Consider the function

f (x) =

{

0 x < 0

1 x ≥ 0

on [−1, 1]. We can write

F (x) =
∫

x

−1

f (t)dt =

{

0 x < 0

x x ≥ 0

.

This isn’t di�erentiable, and it turns out that f does not have an antiderivative
despite being integrable.

Corollary 4.3.1. Let f ∶ [a, b]→ ℝ be continuous and let G be any antiderivative
of f . Then

∫

b

a

f (x)dx = G(b) − G(a) =∶ [G]
b

a
.

Proof. Consider F from FTC. Then

∫

b

a

f (x)dx = F (b) = F (b) − F (a) = G(b) − G(a),

where the last equality follows from the antiderivative uniqueness property.

This gives is the opposite insight as FTC; we can compute an integral given any antiderivative
(even one provided by “my friend Joe, who may have gotten the antiderivative from the black
market”).

Moreover, it holds even if we only assume f is integrable.

Corollary 4.3.2. Let f ∶ [a, b]→ ℝ be continuous, di�erentiable on (a, b), with f ′

uniformly continuous. Then

f (b) − f (a) =
∫

b

a

f
′
(x)dx.

Proof. Apply the previous result with G = f . Now, since it is uniformly continuous, we can
extend f ′ to the closed interval.

Proposition 4.3.1 (Integration by parts). Let f , g ∶ [a, b]→ ℝ be continuous and
di�erentiable on (a, b). Suppose f ′, g′ are uniformly continuous. Then

∫

b

a

f (x)g
′
(x)dx = f (b)g(b) − f (a)g(a) −

∫

b

a

g
′
(x)g(x)dx.
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Proof. Let ℎ(x) = f (x)g(x). Then ℎ is continuous and di�erentiable on (a, b) and ℎ
′
(x) =

f (x)g
′
(x) + f

′
(x)g(x) is uniformly continuous. Apply the previous result.

Proposition 4.3.2 (Substitution). Let f ∶ [a, b] → ℝ be continuous, and let
u ∶ [c, d] → [a, b] be continuous and di�erentiable on (c, a) with u

′ uniformly
continuous. Then

∫

d

c

f (u(x))u
′
(x)dx =

∫

u(d)

u(c)

f (y)dy.

Proof. Let F be an antiderivative of f , which exists by FTC. Then (F ◦ u)′(x) = F ′(u(x))u′(x) =
f (u(x)) ⋅ u

′
(x). So

∫

d

c

f (u(x))u
′
(x)dx = [F ◦ u]

d

c
= [F ]

u(d)

u(c)
=
∫

u(d)

u(c)

f (y)dy.

We can remember this by thinking of x as an independent variable and y = u(x) as dependent
on x .
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5 Sequences and Series of Functions

5.1 The Basics
De�nition 5.1.1. Let D ⊂ ℝ.

1. Assume given, for each n ∈ ℕ, a function fn ∶ D → ℝ. We call (fn) a
sequence of functions. Alternatively, we can write f ∶ ℕ × D → ℝ.

2. Let f ∶ D → ℝ. We say fn → f pointwise if

∀x ∈ D ∶ lim
n→∞

fn(x) = f (x).

Question.

1. If each fn is continuous, is f also continuous?

2. If each fn is di�erentiable at c ∈ (a, b), is f also di�erentiable at c? If so, is

f
′
(c) = lim

n→∞

f
′

n
(c)?

3. If each fn is integrable, is f also integrable? If so, is

∫

b

a

f (x)dx = lim
n→∞

∫

b

a

fn(x)dx?

To answer the second question (the reasoning extends analogously to the other two), it su�ces
to answer the following:

lim
x→c

lim
n→∞

fn(x) − fn(c)

x − c

?

= lim
n→∞

lim
x→c

fn(x) − fn(c)

x − c

.

This gives the more general question:

Question. Can we commute two limits arbitrarily?

Example 5.1.1. Consider an,m = n

n+m
. Then

lim
n→∞

lim
m→∞

an,m = 0

lim
m→∞

lim
n→∞

an,m = 1.

So it appears not. It seems that pointwise convergence doesn’t play nice with our operations.
Here’s an alternative de�nition of convergence:

De�nition 5.1.2. Let D ⊆ ℝ and take a sequence fn of functions D → ℝ. Then
fn → f uniformly for f ∶ D → ℝ if

∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ ∀x ∈ D ∶ |fn(x) − f (x)| < �.
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If we expand the de�nition of pointwise convergence, we can compare it with uniform conver-
gence:

∃x ∈ D ∶ ∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n > N ∶ |fn(x) − f (x)| < �.

They only di�er in the placement of the quanti�er ∀x , which resembles our discussion of
regular/uniform continuity. The “uniformity” of “uniform convergence” refers to the fact that
the N ∈ ℕ applies uniformly across all x .

Example 5.1.2. The sequence fn = xn with D = [0, 1] converges non-uniformly
to a function that is 0 everywhere except at 1. This is a sequence of continuous
functions that converges to a non-continuous function.

Proposition 5.1.1. Let fn → f uniformly. If each fn is (uniformly) continuous, then
f is (uniformly) continuous.

Proof. Let � > 0, a ∈ D. Choose N as in the de�nition of uniform convergence. Choose � > 0
such that

|x − a| < � ⇒ |fN+1(x) − fN+1(a)| < �.

Then

|f (x) − f (a)| = |f (x) − fN+1(x) + fN+1(x) − fN+1(a) + fN+1(a) − f (a)|

≤ |f (x) − fN+1(x)| + |fN+1(x) − fN+1(a)| + |fN+1(a) − f (a)|

< 3�.

Proposition 5.1.2. Let fn → f uniformly on D = [a, b]. If each fn is integrable, so
is f , and

∫

b

a

f (x)dx = lim
n→∞

∫

b

a

fn(x)dx.

Proof. Let � > 0. Choose N as in the de�nition of uniform convergence. Then for n > N :

∀x ∈ [a, b] ∶ fn(x) − � < f (x) < fn(x) + �.

Thus

∫

b

a

(fn(x) − �)dx ≤
∫

b

a

f (x)dx ≤
∫

b

a

f (x)dx ≤
∫

b

a

(fn(x) + �)dx (∗).

But we also have

∫

b

a

(fn(x) − �)dx = ∫

b

a

fn(x)dx − (b − a) ⋅ �

∫

b

a

(fn(x) + �)dx = ∫

b

a

fn(x)dx + (b − a) ⋅ �,

so we write

0 ≤
∫

b

a

f (x)dx −
∫

b

a

f (x)dx ≤ 2(b − a)�.
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This is true for all �, so f is integrable. Use (∗) again to see

|
|
|
|
|

∫

b

a

f (x)dx −
∫

b

a

fn(x)dx

|
|
|
|
|

< (b − a)�.

Proposition 5.1.3. Let fn be a sequence of functions on [a, b] that are continuous,
di�erentiable on (a, b), with f

′

n
uniformly continuous. Assume f ′

n
→ g uniformly,

and there is some c ∈ [a, b] such that the sequence of real numbers (fn(c)) converges.

Then fn → f , f is di�erentiable, and f ′ = g.

Proof. De�ne

f (x) = lim
n→∞

fn(c) + ∫

x

c

g(t)dt.

Note that g is integrable because it is uniformly continuous on (a, b), so it has a continuous
extension to [a, b].

By FTC, f is di�erentiable and f ′ = g. Moreover, using FTC for f ′
n
,

|f (x) − fn(x)| =

|
|
|
|
|

lim
k→∞

fk(c) + ∫

x

c

g(t)dt −
(
fn(c) + ∫

x

c

f
′

n
(t)dt

)

|
|
|
|
|

≤ | lim
k→∞

fk(c) − fn(c)| + ∫

x

c

|g(t) − f
′

n
(t)|dt.

Both terms can be made arbitrarily small.

De�nition 5.1.3. For bounded f ∶ D → ℝ, de�ne ‖f ‖∞ ∶= sup{|f (x)| ∶ x ∈ D}.
We call this the sup norm of f .

Note that ‖f + g‖∞ ≤ ‖f ‖∞ + ‖g‖∞ by properties of the sup. Moreover, ‖f ‖∞ = 0⇒ f = 0.

Consider the set b(D) = {f ∶ D → ℝ bounded}. If we endow it with our notions of arithmetic,
b(D) forms a ring (since multiplicative inverses are not guaranteed).

Note also that fn → f uniformly i� ‖fn − f ‖∞ → 0.

Proposition 5.1.4 (Cauchy criterion). fn → f uniformly i� (fn) is Cauchy for the
sup norm. That is,

∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀n,m > N ∶ ‖fn − fm‖∞ < �.

Proof. For the forward direction, if fn → f uniformly, let � > 0. Choose N as in the de�nition
of uniform convergence. Then, for n,m > N ,

‖fn − fm‖∞ = ‖fn − f + f − fm‖∞ ≤ ‖fn − f ‖∞ + ‖fm − f ‖∞ < 2�.

Now we show the backward direction. For a ∈ D, |fn(a) − fm(a)| ≤ ‖fn − fm‖∞ by construction of
the sup norm. Thus (fn(a)) is Cauchy, hence convergent. Let f (a) be the limit of (fn(a)). This
de�nes a function f ∶ D ∈ ℝ and fn → f pointwise.
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To check uniform convergence, let � > 0. Let N be such that ‖fn − fm‖∞ < � for n,m > N . For
a ∈ D, we have |fn(a) − fm(a)| ≤ ‖fn − fm‖∞ < �. Choose m > N such that |fm(a) − f (a)| < �; then
|fn(a) − f (a)| < 2�, which is true for all a ∈ D.

Proposition 5.1.5 (Weierstrass M-test). Let (fn) be a sequence of function D → ℝ.
If ∑‖fn‖∞ converges, then ∑ fn converges uniformly.

Proof.

∑‖fn‖∞ converges ⇔ ∀� > 0 ∶ ∃N ∈ ℕ ∶ ∀m > n > N ∶

‖
‖
‖
‖
‖

m

∑

k=n

fn

‖
‖
‖
‖
‖∞

≤

m

∑

k=n

‖fk‖∞ < �.

Hence the sequence of partial sums of ∑ fn is Cauchy for the sup norm.

Remark. We call this the “M test” because we can write

∑‖fn‖∞ converges

⇔ ∀n ∶ ∃Mn ∶ ∀x ∈ D ∶ |fn(x)| ≤ Mn and ∑Mn converges

Why do we care about this property? We started with the idea that “most” functions look
like a line if you zoom in enough. But Weierstrass showed that there exist functions that are
continuous everywhere and di�erentiable nowhere (and, in fact, that these form the majority
of continuous functions).

The lesson is that our intuition is often misleading.

Example 5.1.3. Here, we construct an everywhere-continuous but nowhere-
di�erentiable function.

Consider �(x) obtained from |x | onD = [−1, 1] by periodic extension. This function
is not di�erentiable at any integer; moreover, it has these properties:

0. ‖�‖∞ = 1

1. �(x) = �(y) if x − y is even

2. |�(x) − �(x)| = |x − y | if there is no integer between x, y

3. |�(x) − �(y)| ≤ |x − y | for any x, y

Now de�ne

f (x) =

∞

∑

n=0

(

3

4
)

n

�(4
n
x).

We have

∑

‖
‖
‖
‖
(

3

4
)

n

�(4
n
⋅ x)

‖
‖
‖
‖

= ∑
(

3

4
)

n

converges by geometric series.

Therefore, by the M-test,

∑
(

3

4
)

n

�(4
n
x) converges uniformly.

By a previous result, f is continuous.
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Claim. f is nowhere di�erentiable.

Proof. Let a ∈ ℝ. We want to show

lim
ℎ→0

f (a + ℎ) − f (a)

ℎ

does not exist. It is enough to �nd a sequence �m → 0 such that limm→∞

f (a+�m)−f (a)

�m

also does not exist.

For any m, let �m ∈ {−1/2, 1/2} be such that there is no integer between 4ma + �m
and 4ma. De�ne �m = �m/4m → 0. Now we write

f (a + �m) − f (a)

�m

=

∞

∑

n=0

(

3

4
)

n
�(4

n
(a + �m)) − �(4

n
a)

�m

.

Call the rightmost sum term n,m. Suppose n > m. Then 4n ⋅ �m = 4n−m ⋅ �m is even,
so n,m = 0 by Property 1.

If n = m, then 4n�m = �m. By Property 2, |n,m| = 4n.

If n < m, we use Property 3 to write |n,m| ≤ 4
n. Now we can write

|
|
|
|

f (a + �m) − f (a)

�m

|
|
|
|

=

|
|
|
|
|

m

∑

n=0

(

3

4
)
n,m

|
|
|
|
|

= | ± 3
m
± (≤ 3

m−1
) ± (≤ 3

m−2
) +⋯ ± (≤ 3

0
)| ≥ 3

m
− 3

m−1
− 3

m−2
−⋯

=

1

2

(3
m
+ 1)→ ∞.

The idea is that as we add more slopes, the function at our �m will get steeper,
thus making the slope approach in�nity.

De�nition 5.1.4. Let I ⊆ ℝ be an open interval, f ∶ I → ℝ. De�ne f (n) for all
(possible) n ∈ ℕ recursively by f (0) = f and f (n+1) = (f n)′ if possible.

We say f is n-times di�erentiable if f (n) exists. f is smooth if f (n) exists for all
n ∈ ℕ.

De�ne
n
(I ) = {f ∶ I → ℝ | f

(n) exists and is continuous}

∞(I ) = {f ∶ I → ℝ | f smooth}.

These are vector spaces; moreover, we can write

0(I ) ⊃ 1(I ) ⊃ 2(I ) ⊃ ⋯

∞(I ) =
∞

⋃

n=0

n
(I ).

They relate to the derivative as such:

0(I ) d

← 1(I ) d

← 2(I ) d

← ⋯

∞(I ) self loop.

But what if we want to extend the chain to the left of 0(I )?
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5.2 Distributions
Not to be confused with probability distributions.

De�nition 5.2.1. A function f ∶ ℝ → ℝ has compact support if there exists
k > 0 such that f (x) = 0 for x ∉ [−k, k].

De�ne the vector space

∞
C
(ℝ) = {f ∶ ℝ → ℝ | f smooth and has compact support}.

We call this the “space of smooth functions with compact support.” Take f ∈ 0(ℝ). De�ne

�f ∶ ∞
C
(ℝ)→ ℝ

' ↦
∫

∞

−∞

f (x) ⋅ �(x)dx.

We can write some properties about �f :

1. It is linear.

2. If 'k is a sequence in ∞
C
(ℝ) and ' ∈ ∞

C
(ℝ), then for all n ∈ ℕ, '(n)

k
→ '

(n) uniformly
implies �f ('k)→ �f (').

3. �f = 0⇒ f = 0

De�nition 5.2.2. A distribution is a linear map � ∶ ∞
C
(ℝ) → ℝ which is

continuous in the sense of point 2 above.

Denote the vector space of distributions by (R). The map f ↦ �f is a linear map 0(ℝ)→
(ℝ). Let f ∈ ′(ℝ). Then f ′ ∈ 0(ℝ). We write

�f ′(') = ∫

+∞

−∞

f
′
(x) ⋅ '(x)dx

[f ⋅ ']
∞

−∞
−
∫

∞

−∞

f (x) ⋅ '
′
(x)dx = −�f ('

′
).

So we have just generalized the derivative to non-di�erentiable functions!

De�nition 5.2.3. For any � ∈ (ℝ), de�ne � ′ ∈ (ℝ) by �
′
(') = −� ('

′
).

We have (�f )′ = �f ′ . This gives a linear map d ∶ (ℝ)→ (ℝ) generalizing function di�erenti-
ation.

Example 5.2.1. Consider the Dirac delta distribution:

� ∈ (ℝ), �(') = '(0).

This is a distribution that is not a function. As an exercise, check that we can
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produce � via the following chain:

f (x) =

{

0 x < 0

x
2
/2 x ≥ 0

f
′
(x) =

{

0 x < 0

x ≥ 0

f
′′
(x) =

{

0 x < 0

1 x > 0

f
′′′
(x) = �

5.3 Power Series
Recall that a polynomial is a formal expression a0 + a1x + a2x2 +⋯+ anxn for ai ∈ ℝ. It provides
a function f ∶ ℝ → ℝ for c ∈ ℝ given by evaluation at c.

Polynomials are advantageous in that they are nice to work with—they are smooth and we
can compute their derivatives easily. But many useful functions (e.g., trig) do not come from
polynomials.

But many such functions are “almost polynomials.”

De�nition 5.3.1. A power series is a formal expression of the form a0 + a1x +

a2x
2
+⋯ = ∑ anx

n.

Remark. The info in a power series is the sequence (an) of coe�cients. A priori,
we don’t get a function.

Lemma 5.3.1. Let ∑ anx
n be a power series.

1. There exists a unique R ∈ ℝ≥0 ∪ {+∞} such that for all c ∈ ℝ:

|c| < R ⇒ ∑ anc
n converges absolutely

|c| > R ⇒ ∑ anc
n diverges.

2. R = (lim sup
n

√

|an|)
−1
∈ ℝ≥0 ∪ {+∞}.

Proof. Uniqueness is immediate. Existence and 2) follow from the Root Test:

lim sup
n

√

|anc
n
| = lim sup |c| ⋅

n

√

|an| = |c|/R.

De�nition 5.3.2. The above R is called the radius of convergence.

If R > 0, we get a function f ∶ (−R, R)→ ℝ given by c ↦ ∑
∞

n=0
anc

n. If R = 0, we don’t get a
function. R = 0 can in fact happen: consider ∑ n

n
⋅ x

n.

We can think of ∑ anx
n as a series of functions. By de�nition, ∑ anx

n
→ f pointwise on

(−R, R).
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Example 5.3.1. The convergence for |c| = R is subtle. ∑ x
n converges on (−1, 1),

∑
1

n
x
n converges on [−1, 1), and 1

n
2
x
n converges on [−1, 1]. All have R = 1.

Lemma 5.3.2. For any 0 < r < R,

∑ anx
n
→ f uniformly on [−r , r].

Proof. By the previous lemma,

∑|anr
n
| converges ⇔ ∑‖anx

n
|
[−r ,r]

‖∞.

Then Weierstrass M-test implies that ∑ anx
n converges uniformly on [−r , r].

Example 5.3.2. Convergence on (−R, R) need not be uniform. If ∑ x
n converged

uniformly on (−1, 1), then by Silly Test, 1 = ‖x
n
|
(−1,1)

‖∞ → 0, contradiction.

Proposition 5.3.1. Let ∑ anx
n be a power series with radius of convergence R > 0.

Then f ∶ (−R, R)→ ℝ is di�erentiable and f ′ also comes from a power series, namely
∑ nanx

n−1 whose radius of convergence is still R.

Proof. The domain of convergence of ∑ nanx
n−1 is the same as for x ⋅∑ nanx

n−1
= ∑ nanx

n. Its
radius of convergence is

(lim sup
n

√

|nan|)
−1
= (lim sup

n

√

n)
−1
⋅ (lim sup

n

√

|an|)
−1
= 1 ⋅ R = R.

Take 0 < r < R. We know that ∑ nanx
n−1

→ g uniformly on (−r , r) and ∑ anx
n
→ f on (−r , r).

By a previous result, f is di�erentiable and f ′ = g on (−r , r). Since 0 < r < R is arbitrarily, the
same holds on (−R, R).

So functions coming from power series behave as nicely as functions coming from polynomials—
we can di�erentiate them freely while preserving the radius of convergence.

Corollary 5.3.1. If f is associated to ∑ anx
n, then f is smooth and an = f

(n)
(0)

n!
.

Proof. Induce on n. If n = 0, done. For n + 1, we have f (n+1)(0) = (f )′(n)(0) = n! ⋅ bn, where

∑ bnx
n
= f

′
= n!(n + 1)an+1 = (n + 1)! ⋅ an+1.

Now we reverse directions.

Question. Given a smooth f ∶ I → ℝ, where I is an open interval around 0, does
f come from a power series?

Corollary 5.3.1 shows that the only power series f could come from is

∑

f
(n)
(0)

n!

x
n
.

So we give it a name:

De�nition 5.3.3.
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1. The power series ∑
f
(n)
(0)

n!
x
n is called the Taylor series of f .

2.
N

∑

n=0

f
(n)
(0)

n!

x
n

is called the Taylor polynomial of degree N of f .

3.

RN (x) = f (x) −

N−1

∑

n=0

f
(n)
(0)

n!

x
n

is called the N -th Taylor remainder.

The answer to our question is as follows:

f comes from a power series
⇔ f is represented by its Taylor series

⇔ RN → 0 on I ⊂ (−R, R)

Example 5.3.3. The following is a smooth function not represented by its Taylor
series.

f (x) =

{

e
−1/x

2

x ≠ 0

0 x = 0.

We claim f is smooth. If x ≠ 0,

f
′
(x) = e

−1/x
2

⋅

1

x
3
→ 0

f
′′
(x) = e

−1/x
2

⋅
(

1

x
6
−

1

x
4)

→ 0.

This goes forever, so the Taylor series is 0. The Taylor remainder carries the whole
value of the function.

R = 0 can happen; take
f (x) = ∑ e

−n
⋅ cos(n

2
x).

Theorem 5.3.1 (Taylor’s theorem). For any a ∈ (−R, R), there exists b between 0
and a such that:

RN (a) =

f
(N )
(b)

N !

⋅ a
N
.

Proof. Let M be the unique real number such that

f (a) =

N−1

∑

n=0

f
(n)
(0)

n!

a
n
+

M

N !

a
N
.

It is enough to show M = f
(N )
(b) for some b. De�ne

g(x) =

N−1

∑

n=0

f
(n)
(0)

n!

x
n
+

M

N !

x
N
− f (x).
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Now g(0) = g(a) = 0, so by MVT, there is b1 between 0 and a such that g′(b1) = 0.

So g
′
(0) = g

′
(b1) = 0, so we can �nd b2 between 0 and b1 such that g′′(b2) = 0. Repeat this

process until we have g(N−1)(0) = g(N−1)(bN−1) = 0, which gives bN between 0 and bN−1 such that

0 = g
(N )
(bN ) = M − f

(N )
(bN ).

Corollary 5.3.2. If I ⊂ (−R, R) and there is c > 0 such that ‖f (c)‖∞ < c for all a, then
∑

f
(n)
(0)

n!
x
n
→ f .

Proof. By the previous result, we have RN (x) ≤ c ⋅ a
N

N !
→ 0.

Proposition 5.3.2 (Integral form of remainder).

RN (a) = ∫

a

0

(a − t)
N−1

(N − 1)!

f
(N )
(t)dt.

Proof. We induce on N . For N = 1, we have

R1(a) = f (a) − f (0) = ∫

a

0

f
′
(t)dt

by FTC. For N → N + 1, we apply the induction hypothesis

RN (a) = ∫

a

0

(a − 1)
N−1

(N − 1)!

f
(N )
(t)dt

and integrate by parts. Let u′(t) = (a−1)
N−1

(N−1)!
and v(t) = f (N )(t); then

u(a)v(a) − u(0)v(0) −
∫

a

0

u(t)v
′
(t)dt

=

a
N

N !

f
(N )
(0) +

∫

a

0

(a − t)
N

N !

f
(N+1)

(t)dt.

Thus we write

RN+1(a) = RN (a) −

a
N

N !

f
(N )
(0) =

∫

a

0

(a − t)
N

N !

f
(N+1)

(t)dt.

Corollary 5.3.3 (Cauchy remainder). For a ∈ (−R, R), there is b between 0, a such
that

RN (a) =

(a − b)
N−1

(N − 1)!

f
(N )
(b) ⋅ a.

Proof. Firstly, note that for any continuous g ∶ [z, w] → ℝ, there is s ∈ [z, w] such that
∫
w

z
g(t)dt = (w − z)g(s). We can see this by considering the maximum and minimum values of

g, denoted m,M respectively. Then write

m(w − z) ≤
∫

w

z

g(t)dt ≤ M(w − z)
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and apply IVT. Now

RN (a) = ∫

a

0

(a − t)
N−1

(N − 1)!

f
(N )
(t)dt = a ⋅

(a − b)
N−1

(N − 1)!

f
(N )
(b).

What if f ∶ I → ℝ is smooth but 0 ≠ I? Just shift everything by c for some c ∈ I .

De�nition 5.3.4. Let I ⊂ ℝ be an open interval and c ∈ I and f ∶ I → ℝ be a
smooth function.

0. A power series centered at c is ∑ au(x − c)
u.

1. The Taylor series of f centered at c is ∑
f
(u)
(c)

u!
(x − c)

u.

2. The Taylor polynomial of f at c is ∑
N

u=0

f
(u)
(c)

u!
(x − c)

u.

3. The Taylor remainder of f at c of degreeN is Rc
n
(x) = f (x)−∑

N−1

u=0

f
(u)
(c)

u!
(x−

c)
u.

Theorem 5.3.2.

1. If f (x) = ∑
∞

u=0
au(x − c)

u, then an = f
(u)
(c)

u!

2. For any a ∈ I , there is b between c, a such that Rc
N
(a) =

f
(N )
(b)

N !
(a−c)

N (Lagrange
form)

3. For any a ∈ I , Rc
N
(a) = ∫

a

c

(a−t)
N−1

(N−1)!
f
(N )
(t)dt (integral form)

4. For any a ∈ I there is b between c, a such that Rc
N
(a) =

f
(N )
(b)

(N−1)!
(a − b)

N−1
(a − c)

(Cauchy form)

Proof. Apply the previous results to g(x) = f (x − c).

De�nition 5.3.5. Let I ⊂ ℝ be an open interval, f ∶ I → ℝ smooth. We call f
analytic at a ∈ I if there is � > 0 such that f |(a−�,a+�) is represented by its Taylor
series at a. We call f analytic if it is analytic at all a ∈ I .

Proposition 5.3.3. Let ∑ anx
n be a power series with radius of convergence R > 0

and let f ∶ (−R, R)→ ℝ be the associated function. Then f is analytic.

Proof. Let a ∈ (−R, R). Then

∞

∑

u=0

aux
u
=

∞

∑

u=0

au(x − a + a)
u
=

∞

∑

u=0

au

u

∑

k=0

(

u

k)
(x − a)

k
a
u−k
.

The sum runs over {(u, k) | k ≤ u}. If we could interchange summands, we would have

∞

∑

k=0
(

∞

∑

u=k

(

u

k)
a
u−k
au
)

⋅ (x − a)
k
=

∞

∑

k=0

bk ⋅ (x − a)
k
.
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We �rst claim that
∞

∑

u=0

u

∑

k=0

|au |
(

u

k)
|x − a|

k
|a|

u−k

converges. Indeed, this is just ∑u

k=0
|an|(|x − a| + |a|)

u and converges for |x − a| + |a| < R.

Moreover, we claim that if sij is a double sequence and ti = ∑
∞

j=0
|sij | converges and ∑

∞

i=0
ti

converges, then
∞

∑

i=0

∞

∑

j=0

sij =

∞

∑

j=0

∞

∑

i=0

sij .

De�ne D = {1/u | u ∈ ℕ} ∪ {0} and a sequence fi ∶ D → ℝ by

fi(

1

u
)
=

u

∑

j=0

sij fk(0) =

∞

∑

j=0

sij .

Then fi is continuous. Since |fi(x)| ≤ ti and ∑ ti < ∞, Weierstrass-M test shows ∑ fi converges
uniform to a function g which is then continuous. Now

∞

∑

i=0

∞

∑

j=0

sij =

∞

∑

i=0

fi(0) = g(0) = lim
u→∞

g
(

1

u
)

= lim
u→∞

∞

∑

i=0

fi(

1

u
)
= lim

u→∞

∞

∑

i=0

u

∑

j=0

sij

= lim
u→∞

u

∑

j=0

∞

∑

i=0

sij =

∞

∑

j=0

∞

∑

i=0

sij .

5.4 Fourier Series
Consider a function f ∶ [−�, �]→ ℝ, which we can think of as a function f ∶ ℝ → ℝ that is
periodic with period 2� . Assume f is continuous (integrable is enough).

De�nition 5.4.1. The series

∞

∑

n=−∞

an cos(nx) + bn sin(nx)

is the Fourier series of f , where

an =

1

2�
∫

�

−�

f (x) cos(nx)dx

bn =

1

2�
∫

�

−�

f (x) sin(nx)dx.

Does the Fourier series recover f ?

Recall the following properties of sin, cos:

• sin, cos are smooth, sin′ = cos, cos′ = − sin
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• sin(−x) = − sin(x), cos(−x) = cos(x)

• sin(0) = 0, cos(0) = 1

• sin(x)2 + cos(x)2 = 1

• | sin(x)| ≤ 1, | cos(x)| ≤ 1

• sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

• cos(x) sin(y) = 1

2
(sin(x + y) − sin(x − y))

Lemma 5.4.1 (Riemann-Lebesgue). If f ∶ [a, b] → ℝ is integrable, then as
u → ∞,

∫

b

a

f (x) sin(ux)dx → 0

∫

b

a

f (x) cos(ux)dx → 0.

Proof. Let � > 0. Choose step functions ℎ1 ≤ f ≤ ℎ2 with ∫
b

a
ℎ2(x) − ℎ1(x)dx < �.

Let P ∶ a = a0 ≤ a1 ≤ ⋯ ≤ ak = b be a partition to which ℎ1, ℎ2 are adapted. Then

|
|
|
|
|

∫

b

a

f (x) cos(ux)dx

|
|
|
|
|

≤

|
|
|
|
|

∫

b

a

ℎ1(x) cos(ux)dx

|
|
|
|
|

+

|
|
|
|
|

∫

b

a

(f (x) − ℎ1(x)) cos(ux)dx

|
|
|
|
|

.

Now note that

|
|
|
|
|

∫

b

a

(f (x) − ℎ1(x)) cos(ux)dx

|
|
|
|
|

≤
∫

b

a

|f (x) − ℎ1(x)|dx ≤
∫

b

a

(ℎ2(x) − ℎ1(x))dx < �

and write

|
|
|
|
|

∫

b

a

ℎ1(x) cos(ux)dx

|
|
|
|
|

=

|
|
|
|
|

k

∑

i=1

∫

ai

ai−1

ℎ1(x) cos(ux)dx

|
|
|
|
|

=

|
|
|
|
|

k

∑

i=1

ℎ1(

ai−1 + ai

2
)∫

ai

ai−1

cos(ux)dx

|
|
|
|
|

→ 0.

De�nition 5.4.2. The N -th partial Fourier sum for f is

SN , f (x) =

N

∑

n=−N

an cos(nx) + bn sin(nx).

Remark. an = ∫ f (x) cos(nx)dx ⇒ a−n = an, and analogously for bn. So

SN , f (x) = a0 + 2

N

∑

n=1

an cos(nx) + bn sin(nx).

De�nition 5.4.3. The N -th Dirichlet kernel is

DN (x) =

sin((N +
1

2
)x)

sin(
1

2
x)

x ≠ 0.
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Lemma 5.4.2. DN (x) extends continuously to 0 with DN (0) = 2N + 1.

Proof. L’Hopital.

Exercise: graph DN (x) and see that it approximates the Dirac delta function.

Proposition 5.4.1.

DN (x) = 1 + 2

N

∑

n=1

cos(nx).

Proof. We have

sin(x/2)

(

1 + 2

N

∑

n=1

cos(nx)

)

= sin(x/2) + 2

N

∑

n=1

sin(x/2) cos(nx)

= sin(x/2) +

N

∑

n=1

(
sin

(
n +

1

2
)
x − sin

((
n −

1

2
)
x
))

= sin
((

N +

1

2
)
x
)
.

Corollary 5.4.1.

SN , f (x) =

1

2�
∫

�

−�

f (t)DN (x − t)dt =

1

2�
∫

�

−�

f (x + t)DN (t)dt.

Proof. The RHS equals

1

2�
∫

�

−�

f (t)

(

1 + 2

N

∑

n=1

cos(nx − nt)

)

dt

=

1

2�
∫

�

−�

f (t)dt + 2

N

∑

n=1

1

2�
∫

�

−�

f (t)(cos(nx) cos(nt) + sin(nx) + sin(nt))dt

= a0 + 2

N

∑

n=1

an cos(nx) + bn sin(nx),

which is exactly the LHS.

Corollary 5.4.2.

∫

0

−�

DN (x)dx = � = ∫

�

0

DN (x)dx.

Proof. It is enough to show that

∫

0

−�

cos(nx)dx = 0 =
∫

�

0

cos(nx)dx.

Use FTC.
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De�nition 5.4.4. A function f ∶ [−�, �] → ℝ is piecewise di�erentiable
if it is di�erentiable at all x ∈ [−�, �] with possibly �nitely many exceptions
a1,… , ak ∈ [−�, �], where the following limits exist (denote a = ai):

f (a+) ∶= lim

x↓a

f (x)

f (a−) ∶= lim

x↑a

f (x)

f
′
(a+) ∶= lim

x↓a

f (x) − f (a+)

x − a

f
′
(a−) ∶= lim

x↑a

f (x) − f (a−)

x − a

Theorem 5.4.1. Let f ∶ [−�, �]→ ℝ be piecewise di�erentiable. Then

SN , f (x)→

f (x+) + f (x−)

2

,

which equals f (x) if f is continuous at x .

Proof. We have shown already that

SN , f (x) =

1

2�
∫

�

−�

f (x + t)DN (t)dt.

It is enough to show
1

2�
∫

0

−�

f (x + t)DN (t)dt →

f (x−)

2

1

2�
∫

�

0

f (x + t)DN (t)dt →

f (x+)

2

.

To prove this, we claim that

1

2�
∫

�

0

f (x + t)DN (t)dt −

f (x+)

2

→ 0.

This is equivalent to
1

2�
∫

�

0

(f (x + t) − f (x+))DN (t)dt

=

1

2�
∫

�

0

f (x + t) − f (x+)

sin(
1

2
t)

sin
((

N +

1

2
)
t
)
dt.

Claim. g(t) is piecewise continuous.

Admitting this, g is integrable, so by Riemann-Lebesgue, the above expression approaches 0.
Then we are done.

Proof of claim. By de�nition, g is piecewise di�erentiable at all t ≠ 0. It su�ces to check that
the following limit exists:

lim

t↓0

g(t) = lim

t↓0

f (x + t) − f (x+)

t

⋅

t

sin(
1

2
t)

.

The left term’s limit exists since f is piecewise di�erentiable. The right term’s limit exists by
L’Hopital.
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Theorem 5.4.2.
∞

∑

n=1

1

n
2
=

�
2

6

.

Proof. Consider f (x) = |x |, which is piecewise di�erentiable. Then

a0 =

1

2�
∫

�

−�

f (x)dx =

1

2�

⋅

2�
2

2

=

�

2

an =

1

2�
∫

�

−�

|x | cos(nx)dx =

1

2�
∫

0

−�

(−x) cos(nx)dx +

1

2�
∫

�

0

x cos(nx)dx

=

1

�
∫

�

0

x cos(nx)dx =

1

�([

x ⋅ sin(nx)

n ]

�

0

−
∫

�

0

sin(nx)

n

dx
)

=

1

�(
0 +

[

cos(nx)

n
2 ]

�

0

)
)

=

1

� ⋅ n
2
(cos(n� ) − 1),

which is 0 when n is even and − 2

n
2
�

when n is odd. Also,

bn =

1

2�
∫

�

−�

|x | ⋅ sin(nx)dx = 0.

Therefore,
0 = f (0) = lim

N→∞

SN , f (0)

a0 + 2

∞

∑

n=1

an

=

�

2

−∑

n>0

4

n
2
�

⇒ ∑

n>0

1

n
2
=

�
2

8

if n is odd. If n is even, we have the following trick:

3

4

∑

n>0

1

n
2
= ∑

n>0

1

n
2
−

1

4

∑

n>0

1

n
2

∑

n>0

1

n
2
−∑

n>0

1

4n
2

= ∑

n>0 for odd n

1

n
2

∑

n>0

1

n
2
=

4

3

⋅

�
2

8

=

�
2

6

.
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6 �-algebras*

6.1 The Basics
Given a set X and A ⊂ X , denote Ac

= X ⧵A.

De�nition 6.1.1. A �-algebra  on a set X is a family of subsets of X with the
following properties:

1. X ∈ 

2. A ∈  ⇒ A
c
∈ 

3. (An)n∈ℕ ⊂  ⇒ ⋃
n∈ℕ

An ∈ 

A set A ∈  is said to be measurable or -measurable.

The third requirement says that the union of countably many subsets of  must also be a
subset of .

Theorem 6.1.1. Consider a � -algebra . Then the following properties hold:

• ∅ ∈ 

• A, B ∈  ⇒ A ∪ B ∈ 

• (An)n∈ℕ ⊂  ⇒ ⋂
n∈ℕ

An ∈ .

Proof.

• Since X ∈ , we write ∅ = X c
∈  by properties 1 and 2.

• Follows directly from property 3.

• By property 2, we write (An)n∈ℕ ⊂  ⇒ (A
c

n
)n∈ℕ ⊂ . Then we use DeMorgan to obtain

(

⋂

n∈ℕ

An

)

c

= ⋃

n∈ℕ

A
c

n
∈  ⇒ ⋂

n∈ℕ

An ∈ .

Example 6.1.1. Denote the cardinality of a set A by #A. Show that the following
set is a �-algebra:

 ∶= {A ⊂ X ∶ #A ≤ ℕ or #Ac
≤ ℕ}.

That is,  is the set of countable subsets of X and their complements.

Proof. We show that  satis�es the three properties of a �-algebra.

1. X c
= ∅, which is countable. Hence X ∈ .

2. If A ∈ , then Ac
∈  because (Ac

)
c
= A.
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3. Fix a set of (An) and suppose all are countable. Then ⋃
n∈ℕ

An is the countable union of
countable sets; hence, is is countable.

Now suppose some Ai ∈  is uncountable. Then Ac

i
must be countable, so we write

(

⋃

n∈ℕ

An

)

c

= ⋂

n∈ℕ

A
c

n
⊂ A

c

i
.

So the leftmost expression is countable, and thus its complement is in .

Theorem 6.1.2 (Existence of generators). For every system of sets  ⊂ (X ) there
exists a smallest � -algebra containing .

Proof. Consider the union of all �-algebras containing :

 ∶= ⋂

⊃
 , where  is a �-algebra.

We claim that  is the minimal family in question. Using De�nition 3.1.1, it is easy to check
that the intersection of arbitrarily many �-algebras is itself a �-algebra.

But, by de�nition, if  ⊂ ′ for a � -algebra ′, then  ⊂ ′, so || ≤ |′
|. So  is the smallest

�-algebra containing .

6.2 Borel �-algebras
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