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0 Introduction
Quantum circuits, algorithms, and computation.

Professor: Jon Beaumont.

Textbook: None.
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1 Quantum Logic

1.1 The Basics
Quantum computers use the laws of quantum mechanics as the basis for computation. Here’s
an experiment:

1. Take a single particle, like an electron

2. Isolate the particle so that nothing, not even light, interacts with it

3. Shoot it down a channel until it hits a detector

The expected behavior occurs; the detector observes the particle when it reaches the end of
the channel. Now we introduce a splitter that has a 50/50 chance of de�ecting the particle up
or down.

As expected, each detector activates half of the time. But what if we merge the branches with
another splitter?

We should see the same result, but in fact the top detector activates 100% of the time. This is
because the particle does not take the top or bottom path; two di�erent versions of the particle
simultaneously take both paths.

That is, the particle is in superposition until it is observed. In the experiment, these superposed
versions interfered with one another, canceling out the path to the bottom detector.

This is useful for computing because we can represent data using quantum bits, orqubits, which
are bits in superposition of 0 and 1. A qubit can be 0, 1, or both, which lets us simultaneously
represent every n-bit value using n qubits.

Incidentally, the superposition collapses when we observe it, so an e�ective quantum algorithm
must take advantage of interference.
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1.2 Math and Notation
To represent the probability of a quantum state, we use complex numbers. This lets us account
for the cancellation of probabilities during interference.

The magnitude of a complex number is its distance from 0. Its phase is the angle formed by
the positive x-axis in the complex plane. Addition and multiplication are de�ned intuitively
and have the expected properties.

We can write eix = cos(x) + i sin(x), which generalizes to the polar form of a complex number
rei� with magnitude r and phase �. This makes multiplication easier.

This is enough for us to express probabilities of quantum states. To express the states themselves
we use ket notation, which looks like | ⟩.

Consider an experiment with two possible outcomes: 0 or 1. We write |0⟩ and |1⟩ for the
states where we de�nitely measure a 0 and 1, respectively. To represent superposition, the
current state is written as | ⟩ = � |0⟩ + � |1⟩ for �, � ∈ ℂ. � and � are called probability
amplitudes.

� ∗� is then the probability that the state collapses to |0⟩ upon measurement. We say that | ⟩
represents the state of a quantum bit, or a qubit. Note that two qubits can have equal state
probability distributions but di�erent phases, which is useful for abstracting interference.

There is one caveat: states that di�er only by a common phase factor—global phase—are
considered physically equivalent. Global phase a�ects neither:

• state probability (only the magnitude of the probability amplitude does)

• nor interference (only relative phase does),

so it doesn’t a�ect quantum state.

That is,
ei� (|0⟩ + |1⟩) ≈ |0⟩ + |1⟩
ei� |0⟩ + |1⟩ ≠ |0⟩ + |1⟩ .

1.3 Qubits
A quantum state can be described as a vector in a complex valued, N -dimensional vector space.
This means that we can express a quantum state as a linear combination of N basis vectors (or
state vectors), where each state vector is a potential outcome:

| ⟩ = ∑
j
�j |j⟩ .

As before, the probability amplitudes �j are complex. It’s natural to then ask about the minimum
amount of space needed to encode a qubit. For simplicity, consider a qubit �0 |0⟩ + �1 |1⟩ in a
2D vector space.

In this example, four parameters de�nitely su�ce: we can take the four total arguments of �0
and �1. In polar form, these are r0, r1, �0, �1.
But since global phase is irrelevant, we can send the phase of one probability amplitude to 0 and
adjust the other to preserve relative phase. Note also that the magnitudes (i.e., probabilities)
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must add to one. So we can write the qubit’s state as such:

| ⟩ = cos(�/2) |0⟩ + (ei�) sin(�/2) |1⟩

using the well-known identity sin2(�) + cos2(�) = 1.

We can then graph � and � as coordinates on a Bloch sphere.

� and � play exactly the same role here as they do in spherical coordinates; � is the angle from
the z-axis and � is the angle from the x-axis.

Intuitively, “latitude,” or the height of the terminal point, represents the probability distribution
between states |0⟩ and |1⟩. “Longitude” represents phase.

1.4 Single-Qubit Transformations
Take a general state vector | ⟩ = � |0⟩ + � |1⟩. The operation that swaps � and � is called an
X -transformation:

X | ⟩ = � |0⟩ + � |1⟩ .
This has the e�ect of rotating the Bloch sphere through the plane perpendicular to the x-axis.
If we encode | ⟩ by [�, �]⊤, we can represent an X -transformation as follows:

X | ⟩ = [
0 1
1 0][

�
�].

Note that X is given by the familiar linear transformation whose matrix swaps vector entries
in ℝ2.

We might then ask what other (linear) transformations exist for qubits. Importantly, since
the probabilities in a qubit must add to 1, the matrix of a valid transformation must preserve
length (the norm given by the space’s inner product).
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The matrices that yield length-preserving linear transformations are called unitary operators.
A matrix M is unitary if it satis�es:

M†M = I

⇔ [
a∗ c∗
b∗ d ∗][

a b
c d] = [

1 0
0 1]

Since they do not scale points in space, unitary operators correspond to rotations of the Bloch
sphere. Also, note that every unitary matrix M necessarily has an inverse M†.

Now that we know how to characterize valid qubit transformations, let’s look for one that
allows us to map |0⟩ or |1⟩ to a state not on the z-axis of the Bloch sphere. TheX -transformation
is insu�cient since it simply inverts the state like a classical NOT gate.

Denote |0⟩ by [1, 0]⊤. At �rst glance, it seems like we can just do the following:

(
1√2[

1 1
1 1])[

1
0] = [

1√2
1√2]
.

Unfortunately, this choice of matrix also gives

(
1√2[

1 1
1 1])[

0
1] = [

1√2
1√2]

and so the transformation is not injective; hence, the matrix is neither invertible nor unitary. But
we can add a phase to |1⟩ by negating its probability amplitude so that our matrix becomes

1√2[
1 1
1 −1].

On the basis states, this transform yields

(
1√2[

1 1
1 −1])[

1
0] = [

1√2
1√2]

=∶ |+⟩

(
1√2[

1 1
1 −1])[

0
1] = [

1√2
− 1√2]

=∶ |−⟩

We call this the Hadamard or H -operation.

From before, we know that every unitary transformation preserves norm, meaning that they
e�ectively rotate the Bloch sphere. H does a 180◦ rotation about the axis x = z.

Here’s some intuition for why the rotation is 180◦; grokking the axis is left as an exercise. We
know already that H |0⟩ = |+⟩. So computing H 2 |0⟩ = H |+⟩ yields, by linearity of H :

H |+⟩ = H(
1√2 |0⟩ +

1√2 |1⟩)

= 1√2H |0⟩ + 1√2H |1⟩

= 1
2(|0⟩ + |1⟩) + 1

2(|0⟩ − |1⟩)

= 1
2 |0⟩ +

1
2 |0⟩

= |0⟩
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So applying the H -operation to the basis vector |0⟩ twice yields itself, which we would expect
from a 180◦ rotation.

But this looks familiar! This is exactly the outcome of our particle experiment from earlier,
where a particle in superposition of two states ended up de�nitively in one of them due to
interference.

Now that we have two transformations, we can represent them jointly in a circuit dia-
gram:

This is equivalent to the equation

1√2[
1 1
1 −1][

0 1
1 0][

1
0],

which represents a qubit initialized to | ⟩ = |0⟩ that undergoes an X transformation followed
by an H transformation. Each operator is shown as a gate in the circuit diagram. This
representation is only conceptual; actual quantum computers suspend particles in a �eld and
change their energies without physically moving them through gates.

We can also express our quantum experiment from earlier as follows:

Each splitter is functionally an H -gate that sends the particle into superposition of the basis
states.

Some other gates include the Y -gate:

Y = [
0 −i
i 0 ].

This functions like X but adds an additional phase. We also have the Z -gate:

Z = [
1 0
0 −1].

This rotates the sphere 180◦ around the z-axis. The X , Y , and Z gates collectively are called
Pauli gates.

There are a few more gates that operate similarly to Z but with more granular angles:

S = [
1 0
0 e i�

2 ].

T = [
1 0
0 e i�

4 ].
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RZ (�) = [
e −i�

2 0
0 e i�

2 ].

Note that S2 = Z and T 4 = Z . RZ (�) rotates about the z-axis by �.

It turns out that any quantum gate can be approximated with a combination of basis gates.
One basis is {H, S, T}; in this class, we use {H, S, RZ}.

1.5 Multi-Qubits
Multi-qubits encode states whose outcomes are multiple bits. So a 2-qubit state would look
like the following:

| ⟩ = �00 |00⟩ + �01 |01⟩ + �10 |10⟩ + �11 |11⟩ .

We have four basis states, meaning that | ⟩ is in a 4D complex vector space. The probability
of measuring |00⟩ is |�00|2.
As before, we can drop two parameters from our representation (one for global phase, one
accounting for total probability), so we need six parameters to encode | ⟩. In general, the
number of parameters is exponential in the number of qubits.

To describe multi-qubit states mathematically, we use the tensor product of multiple isolated
qubits. In the two-qubit case, we write:

|ab⟩ = |a⟩ ⊗ |b⟩ =

⎡
⎢
⎢
⎢
⎢
⎣

a0[
b0
b1]

a1[
b0
b1]

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a0b0
a0b1
a1b0
a1b1

⎤
⎥
⎥
⎥
⎦

.

We de�ne the tensor product of matrices analogously. Consider matrices

M = [
a b
c d] N = [

e f
g ℎ].

Then M ⊗ N is given by:

M ⊗ N = [
aN bN
cN dN ] =

⎡
⎢
⎢
⎢
⎣

ae af be bf
ag aℎ bg bℎ
ce cf de df
cg cℎ dg dℎ

⎤
⎥
⎥
⎥
⎦

.

This is useful because it lets us de�ne gates for multi-qubits. For instance, we can write
X |q1⟩ ⊗ H |q0⟩ = (X ⊗ H ) |q1q0⟩.

So if we want a multi-qubit gate that only acts on, say, the �rst qubit, we take the tensor
product of some gate with the identity. The 2-qubit gate that only applies X to the �rst qubit
is then given by (X ⊗ I ) since (X ⊗ I ) |q1q0⟩ = X |q1⟩ ⊗ I |q0⟩ = X |q1⟩ ⊗ q0.
But this single-qubit operation is kind of trivial. We would really bene�t from gates where the
qubits are not changing independently—gates like AND and OR.
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Note that a traditional XOR gate fails, though, since it is not injective. We work around this by
creating a gate with two outputs: for any inputs A and B, it outputs A and A∧B. This is called
the CNOT, or conditional-NOT gate. Its truth table is as follows:

Input (t, c) Output (t, c)
|00⟩ |00⟩
|01⟩ |11⟩
|10⟩ |10⟩
|11⟩ |01⟩

We call t the target bit and c the control bit; c is always unchanged and t is overwritten with
the XOR result. In a circuit diagram, the bits are drawn as follows:

The control qubit is �lled and the target is drawn with a plus. By convention, in this class, the
bottom bit (q1 in this case) is taken to the be the most signi�cant bit.

Example 1.5.1. Compute CNOT |01⟩ given the con�guration above.

Solution. In the diagram, q1, the most signi�cant bit, is the target. So we replace the leftmost
qubit in |01⟩ with 0∧1 = 1 and preserve the control q0, which is the least signi�cant bit.

This gives CNOT |01⟩ = |11⟩.

We can also apply CNOT on more complex qubits.

Example 1.5.2. Compute CNOT |0+⟩.

Solution. Note |0+⟩ = |0⟩⊗ 1√2 (|0⟩+ |1⟩) = 1√2 (|00⟩+ |01⟩). For the sake of notation, we will often
omit factors of 1√n from state vectors since we know they must be normalized. So 1√2 (|00⟩+ |01⟩)
is written as |00⟩ + |01⟩.

In practice, we would obtain this multi-qubit state by applying CNOT to two qubits: both
initialized to |0⟩, and one passing through an H -gate.

We compute CNOT |0+⟩ by applying CNOT to each basis state and combining the results using
linearity, which gives CNOT |0+⟩ = CNOT |00⟩ + CNOT |01⟩ = |00⟩ + |11⟩. This is called the
Bell state.

The Bell state has an interesting property: it is not equal to the tensor product of any two
independent qubits. This is immediate from the fact that |a⟩ ⊗ |b⟩ = [a0b0, a0b1, a1b0, a1b1]⊤ =
[1, 0, 0, 1]⊤ implies that a0 = 0 or b1 = 0, which is impossible since a0b0 = a1b1 = 1.

So |00⟩ + |11⟩ cannot be factored into a product of single-qubit states; it is not a product state.
Instead, it is an entangled state, which implies correlation between its constituent states.
That is, one qubit is fully determined by the other; the value we measure for one qubit is the
value for the other.
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Returning to product states, consider the following example:

Example 1.5.3. Compute CNOT |−+⟩ where the most signi�cant bit is the target.

Solution. We start by writing |−+⟩ = (|0⟩ − |1⟩) ⊗ (|0⟩ + |1⟩) = |00⟩ − |10⟩ + |01⟩ − |11⟩. By direct
computation, we get

CNOT(|00⟩ − |10⟩ + |01⟩ − |11⟩) = |00⟩ − |10⟩ + |11⟩ − |01⟩ .

Note that this expression resembles a2 − ab − ba + b2 = (a − b)2. Indeed, we can factorize it as
(|0⟩ − |1⟩) ⊗ (|0⟩ − |1⟩) = |−⟩ |−⟩ = |−−⟩.

That looks illegal. We just inverted the phase of the control! This phenomenon is known as
phase kickback.

Why does this happen? Recall that CNOT is essentially a controlled X gate; we apply an X gate
to the target i� the control bit is |1⟩. But, like many linear transformations, X has eigenvectors
(here, eigenstates) and eigenvalues.

For instance, X |+⟩ = X (|0⟩+ |1⟩) = |1⟩+ |0⟩ = 1 |+⟩, so |+⟩ is an eigenstate of X with eigenvalue
1. Similarly, |−⟩ is an eigenstate of X with eigenvalue -1. Note that since our gates are unitary,
any eigenvalue must be a magnitude-1 complex number; that is, of the form ei� .
Multiplication by ei� corresponds to a phase addition of � , which is consequential for controlled
operations. Consider a controlled-U , or CU operation, where U is applied to a target qubit i�
the control is 1. If |�⟩ is an eigenstate of U with eigenvalue ei� , we have the following:

CU |�+⟩ = CU (|�⟩ |0⟩ + |�⟩ |1⟩) = |�⟩ |0⟩ + ei� |�⟩ |1⟩

where the last equality follows from the fact that the target bit is 1 in |�⟩ |1⟩ but not |�⟩ |0⟩.
Since CU is controlled, the phase shift is only applied to one basis state, changing the relative
phase.
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2 Quantum Algorithms

2.1 Deutsch-Jozsa
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