The dollar game

Albon Wu

Mentor: Ben Baily

University of Michigan

November 2024

2 Winning the dollar game

3 Connection to algebraic geometry

Section 1

The basics

Each vertex is assigned an integer amount of wealth. We say that v_1 is *in debt*.

Lending and borrowing moves redistribute wealth.

Lending and borrowing moves redistribute wealth.

To lend at v_2 :

Lending and borrowing moves redistribute wealth.

To lend at v_2 :

Borrowing moves defined analogously.

Question (The dollar game)

Does there exist a sequence of lending/borrowing moves that brings every vertex out of debt?

Question (The dollar game)

Does there exist a sequence of lending/borrowing moves that brings every vertex out of debt?

Yes! Lend at v_3 .

Question (The dollar game)

Does there exist a sequence of lending/borrowing moves that brings every vertex out of debt?

Yes! Lend at v_3 .

Take a graph G with vertices V and define $D: V \to \mathbb{Z}$. Then a **divisor** on G is an element of the abelian group:

$$\operatorname{Div}(G) = \mathbb{Z}V = \left\{\sum_{v \in V} D(v)v\right\}.$$

A divisor assigns each vertex a coefficient representing its integer dollar wealth.

The divisor corresponding to $(v_1, v_2, v_3) \mapsto (-1, 2, 2)$ is $-v_1 + 2v_2 + 2v_3$.

Take a graph G. Given $D \in Div(G)$, a **lending move** at $v \in V$ produces $D' \in Div(G)$ as follows:

$$D-\sum_{vw\in E}(v-w)=:D'.$$

A **borrowing move** at *v* produces

$$D-\sum_{vw\in E}(w-v)=:D'.$$

To lend at v_3 on $-v_1 + 2v_2 + 2v_3$, subtract $(2v_3 - v_1 - v_2)$ to obtain

$$-v_1 + 2v_2 + 2v_3 - (2v_3 - v_1 - v_2) = 3v_2$$

- The *abelian property* is immediate.
- Allows us to think about the following:

Proposition

For $D \in \text{Div}(G)$, lending at $v' \in V$ is equivalent to borrowing at all $v \in V \setminus \{v'\}$.

We say that $V \setminus \{v'\}$ was *set-fired*.

Set-firing

Set-firing

Only the "border vertices" feel a net effect.

Take $D, D' \in Div(G)$. Then D is **linearly equivalent** to D', or $D \sim D'$, if some sequence of lending moves on D produces D'.

Definition

The **divisor class** of $D \in Div(G)$ is given by

$$[D] \coloneqq \{D' \in \operatorname{Div}(G) : D \sim D'\}.$$

Definition

An effective divisor D is one such that $D(v) \ge 0$ for all $v \in V$.

Question (The dollar game)

Is a divisor D linearly equivalent to an effective divisor? If so, we say D is *winnable*; otherwise, it is *unwinnable*.

Section 2

Winning the dollar game

Take a divisor D. We perform *q*-reduction at the source vertex q as follows:

Algorithm (q-reduction)

- Pick a vertex q and have the other vertices borrow from it until only q is in debt.
- 2 Find and lend from a set of vertices that will not leave behind debt. Call this a *legal* firing move.
- **3** Repeat step 2 for as long as possible.

Theorem

- **1** The q-reduction algorithm always terminates.
- **2** The q-reduced divisor is unique to D and q.
- **3** D is winnable if and only if q is not in debt after q-reduction.

Proof of 3.

Backward direction: immediate.

Forward direction: let $D \sim E$ for effective E. Then q-reduce D and E to obtain D', E'. By uniqueness, D' = E' since they are determined by the same D and q, so D' is effective. Therefore, D is winnable.

No set can be fired without leaving behind debt. Unwinnable!

Section 3

Connection to algebraic geometry

An **algebraic variety** is the set of solutions to a system of polynomial equations over a field.

Example

- The variety corresponding to the circle in \mathbb{R}^2 is $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$
- The variety $\{(x, y) \in \mathbb{R}^2 : xy t = 0\}$ describes a hyperbola.

This is called the special fiber.

Divisors on varieties

Divisors on varieties

Divisors on varieties

Proposition

Given a curve X and its dual graph G, there exists a surjective group homomorphism $\rho : \text{Div}(X) \to \text{Div}(G)$.

Thank you!