
  

 

Abstract— Hand gesture recognition using high-density 

surface electromyography (HD-sEMG) has gained increasing 

attention recently due its advantages of high spatio-temporal 

resolution. Convolutional neural networks (CNN) have also 

recently been implemented to learn the spatio-temporal features 

from the instantaneous samples of HD-sEMG signals. While the 

CNN itself learns the features from the input signal it has not 

been considered whether certain pre-processing techniques can 

further improve the classification accuracies established by 

previous studies. Therefore, common pre-processing techniques 

were applied to a benchmark HD-sEMG dataset (CapgMyo DB-

a) and their validation accuracies were compared. Monopolar, 

bipolar, rectified, common-average referenced, and Laplacian 

spatial filtered configurations of the HD-sEMG signals were 

evaluated. Results showed that the baseline monopolar HD-

sEMG signals maintained higher prediction accuracies versus 

the other signal configurations. The results of this study 

discourage the use of extra pre-processing steps when using 

convolutional networks to classify the instantaneous samples of 

HD-sEMG for gesture recognition. 

Keywords: High-density Surface EMG; Classification; 

Gesture; Convolutional Network 

 

I. INTRODUCTION 

Gesture recognition using features from electromyography 
(EMG) is not a new concept, but the methods and 
implementations have advanced over the years. It has been 
shown that gesture recognition using features extracted from 
EMG can be more efficient [1] and cost-effective [2] versus 
traditional rehabilitation methods. Informing the gesture 
recognition with EMG patterns has clinical relevance in 
helping regain some level of motor control for stroke patients, 
among other motor-impaired individuals. For example, 
features extracted from EMG at forearm muscles have been 
used in muscle-computer interfaces to assist motor-impaired 
individuals such as chronic stroke patients in performing hand 
gestures with training in a case study [3]. Lu et al. 
demonstrated in this study that robot-assisted rehabilitation 
using features extracted in real-time from EMG an 
improvement in the Fugl-Meyer (Part C) clinical score from 0 
to 7. However, the feasibility of this kind of work should be 
assessed on a patient-by-patient basis [4]. EMG-driven gesture 
recognition has also been successful in some applications with 
cervical spinal-cord injury (SCI) patients [5]. High-density 
surface electromyography (HD-sEMG) has also been applied 
by Zhang and Zhou [6] to classify 20 different arm, hand, and 
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finger movements using 89 electrodes with accuracies of 
96.1% ± 4.3%, indicating that there is substantial amount of 
information to be implemented from HD-sEMG with the 
inherent benefits of high spatio-temporal resolution. HD-
sEMG surface maps were shown by Rojas-Martínez et al. to 
be quite useful in classifying the motor intent [7, 8]. 
Leveraging the high spatio-temporal resolution of HD-sEMG 
signals allows for the high-density mapping of the muscles, 
providing more information than single-site electrodes per 
muscle. 

Deep learning methods such as convolutional neural 
networks (CNN) and have also recently been explored for the 
purpose of decoding fine motor control from HD-sEMG. Geng 
et al. first proposed the idea of using a CNN to classify so-
called HD-sEMG instantaneous images, produced by re-
arranging individual samples of HD-sEMG into 2D arrays 
with above state-of-the-art classification accuracies of 89.3% 
within-subjects on just 1 image and 99.0% after 40 images 
with 1000 Hz sampling rate [9]. Other studies have followed 
suit in expanding upon the original neural network architecture 
proposed by Geng et al. by including a deep-learning-based 
domain adaptation framework [10], using hybrid 
convolutional recurrent neural networks [11], multi-stream 
convolutional networks [12], 3D convolutional networks 
versus the usual 2D convolutional networks [13], and multi-
label classification [14]. Deep learning is extremely useful for 
EMG classification, identifying spatial and temporal patterns 
in HD-sEMG signals without the need to manually generate 
any features from the signals before inputting into networks. 

Several deep learning methods have been studied to 
improve upon the existing classification accuracies, but 
different pre-processing techniques have yet to be explored. In 
this study, common and simple pre-processing techniques 
were used prior to HD-sEMG image generation to identify 
what the most ideal pre-processing pipeline would be to 
increase the classification accuracies of hand gesture 
recognition. It is hypothesized that re-referencing the HD-
sEMG signals prior to image generation can provide higher 
classification accuracies while not adding too much added 
latency to the process.  

II. METHODS 

A. Data Description 

The CapgMyo DB-a dataset is a publicly available dataset 
online originally provided by Geng et al. [9]. It consists of 128-
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channel monopolar HD-sEMG sampled at 1000 Hz from 
eighteen participants, eight gestures, and ten repetitions per 
gesture. Each trial contains 1 second of steady state contraction 
for a specified gesture. The pre-processed version of the 
dataset was used in this study. The previous pre-processing 
included a bandpass filter between 20-380 Hz, and a notch 
filter at 50 Hz for powerline artifacts.  

The DB-a dataset consists of the following hand gestures: 
thumb up, extension of middle and ring finger with flexion of 
all other fingers, flexion of ring and little fingers with 
extension of all other fingers, thumb opposing base of little 
finger, abduction of all fingers, all fingers flexed into a fist, 
index finger pointed, and adduction of extended fingers. 

B. HD-sEMG Pre-Processing Techniques 

HD-sEMG signals were subjected to one pre-processing 
technique before converting the signals into 2D grayscale 
images. The original HD-sEMG signals were either kept 
monopolar, converted into a bipolar configuration, fully 
rectified, re-referenced to the common average, or subjected to 
a Laplacian spatial filter such that the new HD-sEMG image, 
LAP, is formed by convolving the original image, IMG, with 
the Laplacian kernel (1). Bipolar HD-sEMG images were of 
size 7x16 whereas all other HD-sEMG image configurations 
were of size 8x16. Huang et al. have shown that Laplacian 
spatial filters can improve the accuracy of EMG classification 
on patients after targeted muscle reinnervation procedures 
[15].   

 𝐿𝐴𝑃8𝑥16  =  𝐼𝑀𝐺8𝑥16 ⊗ [
0 1 0
1 −4 1
0 1 0

] (1) 

C. Neural Network Architecture, Training, and Validation 

All data analysis, including image creation, network 
creation, training, and validation, was performed in the 
MATLAB environment (MATLAB R2020b, The 
MathWorks, Inc.). Grayscale images served as inputs into 
network, followed by two 2D convolutional layers (64 filters, 
3x3, stride of 1), three fully connected layers (512, 512, and 
128 units respectively), and a G-way fully connected layer 
followed by a softmax function. The image input was followed 
by a batch normalization layer. Each convolutional layer and 
fully connected layer were followed by batch normalization 
and ReLu activation. Dropout layers with a probability of 0.5 
were placed after each fully connected layer. 

Odd-numbered trials were used for model training and 
even-numbered trials were used for model validation per-
subject. The models were trained with 20 epochs on the 
validation dataset with a validation frequency of 40. The mini-
batch size was set to 1000. Stochastic gradient descent with 
momentum (SGDM) was used as the optimizer initialized at 
0.1 and decreased by a factor of 10 after the 10th epoch to 0.01 
with a momentum of 0.9. 

III. RESULTS 

A.  Comparing Prediction Accuracy 

Prediction accuracies were assessed by counting the 
number of correctly predicted labels in the even-numbered 
trials used as the validation set. Table I reports the prediction 
accuracies for all five data configurations tested while Table II 

reports the subject-specific prediction accuracies achieved 
with the convolutional networks along with the subject 
identifiers. 

 

The baseline monopolar HD-sEMG signals had the best 
classification results with a prediction accuracy of 83.31% 
whereas the bipolar HD-sEMG signals had the worst 
prediction accuracy at 81.25%. The common average re-
referenced data performed nearly like the baseline data with a 
prediction accuracy of 83.30%. Individual results were also 
compared with paired boxplots and are displayed in Fig. 1 
below. Fig. 1 demonstrates the consequences of the added pre-
processing on individual subject datasets. Subject 9 was the 
only subject to receive a notable increase in prediction 
accuracy, most pronounced with the rectified data. The 
prediction accuracy increased about 20% from 64% to 84% 
approximately. 

TABLE I.  PREDICTION ACCURACY COMPARISON 

CapgMyo DB-a Dataset 

Data Type Mean Deviation 

Baseline 83.31% ± 7.24% 

Bipolar 81.25% ± 6.91% 

Rectified 82.34% ± 6.05% 

Common Average 83.30% ± 7.03% 

Laplacian 82.60% ± 6.83% 

TABLE II.  INDIVIDUAL RESULTS 

Subject Baseline Bipolar Rectified Common 
Average 

Laplacian 

1 92.15% 89.54% 92.19% 91.98% 90.74% 

2 85.29% 82.55% 83.37% 85.24% 83.99% 

3 90.34% 88.01% 87.84% 90.24% 89.57% 

4 88.94% 87.33% 84.94% 88.77% 87.96% 

5 78.25% 75.82% 75.96% 77.81% 78.45% 

6 91.06% 88.68% 87.67% 90.91% 89.99% 

7 85.89% 81.41% 86.52% 85.41% 83.42% 

8 88.86% 88.29% 86.09% 89.27% 88.77% 

9 64.32% 64.95% 84.23% 65.78% 65.78% 

10 80.71% 78.95% 79.96% 81.00% 80.54% 

11 77.77% 76.31% 75.64% 77.81% 77.98% 

12 80.01% 78.74% 76.39% 79.79% 79.08% 

13 85.46% 82.40% 84.09% 85.59% 85.33% 

14 78.91% 73.94% 74.92% 78.72% 76.67% 

15 80.28% 78.55% 76.47% 80.06% 79.17% 

16 74.35% 73.17% 71.70% 74.30% 73.70% 

17 92.22% 90.82% 91.93% 92.35% 91.53% 

18 84.79% 83.04% 82.19% 84.43% 84.07% 
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IV. DISCUSSION 

HD-sEMG signals provide a high spatio-temporal 
resolution which can be exploited for nearly instantaneous 
recognition of hand gestures in real-time applications. Such 
spatio-temporal patterns of HD-sEMG images can be 
identified using deep learning methods involving 
convolutional networks. Reducing the amount of pre-
processing necessary for real-time applications such as 
prosthesis-control and motor rehabilitation can improve the 
quality of these applications for use with motor-impaired 
individuals. 

The results of this study did not meet the expectations of 
the proposed hypothesis. Monopolar HD-sEMG signals were 
found to produce better classification results versus adding any 

other common EMG pre-processing steps prior to image 
generation and classification. On a subject-by-subject basis, 
converting the HD-sEMG to bipolar signals was only 
beneficial to one subject. Rectifying the HD-sEMG signals 
increased the classification accuracies only for three subjects. 
Re-referencing the HD-sEMG to the common average 
improved classification results for six subjects. Convolving the 
HD-sEMG images with the Laplacian spatial filter helped only 
for three subjects. While the common average re-referencing 
did improve the results for one-third of the sample-size it was 
not beneficial enough to be considered a significant 
improvement from the baseline signals across all subjects. 
Future studies may consider re-referencing their signals to the 
common average on a subject-specific basis to observe any 

 

Figure 1. Individual Results on DB-a Dataset. All four pre-processing steps were compared to the baseline monopolar signals. 
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potential benefits from removing the common noise 
component. 

However, the results of this study do support the idea that 
minimal pre-processing is necessary for accurate hand gesture 
recognition of HD-sEMG signals, which is helpful due to the 
limited time constraints of real-time control applications. 
Additionally, Yao et al. identified that active shielding in the 
recording system improved the classification of EMG when 
greater than 12 channels were used by removing the common 
component of signal [16]. Such active shielding could benefit 
new studies using deep-learning methods to classify HD-
sEMG and its usage should be explored. 

The results of this study are comparable to that of Geng et 
al. [9] when it comes to the decrease in prediction accuracy 
with added pre-processing steps. Geng et al. also explored the 
consequences of rectifying the HD-sEMG as well as removing 
crosstalk from the signals. They identified a reduction in the 
prediction accuracy for both of those methods while a similar 
reduction was found when rectifying the data here once again 
as well as removing the common-average from the signals. 
While the effects of added pre-processing were observed and 
quantified for HD-sEMG signals it remains to be seen whether 
the same effects are visible in sparser sEMG datasets that are 
not HD-sEMG such as the NinaPro dataset. 

This study demonstrates the advantages and disadvantages 
of certain HD-sEMG signal configurations for hand gesture 
recognition. The results of this study can inform future clinical 
studies intending to use the CNN HD-sEMG for prosthesis 
control and or motor rehabilitation for neurologically impaired 
individuals such as chronic stroke patients or amputees. 

V. CONCLUSION 

Different common pre-processing techniques were 

assessed in HD-sEMG signals to determine the most optimal 

input images to a CNN for hand gesture recognition in a 

benchmark dataset. It was found that the baseline monopolar 

signals provided the best prediction accuracy compared to all 

other configurations studied. The results of this study suggest 

that only filtering the HD-sEMG signals prior to creating 

instantaneous images is sufficient for classifying hand 

gestures with high prediction accuracy.  
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