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Section 1

Lie groups and Lie algebras
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Matrix Lie groups

Definition

The general linear group over the complex numbers is denoted GL(n;C)
and consists of all invertible n × n matrices with complex entries.

Definition

A matrix Lie group is a subgroup G of GL(n;C) such that if Am is a
sequence of matrices in G , we have Am → A implies A ∈ G .
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SL(2;C) as a matrix Lie group

Definition

A matrix Lie group is a subgroup G of GL(n;C) such that if Am is a
sequence of matrices in G , we have Am → A implies A ∈ G .

Example

The group of 2× 2 matrices with entries in C and determinant 1,
denoted SL(2;C), is a matrix Lie group.

Proof.

SL(2;C) ≤ GL(2;C) is immediate. Now take a sequence Am → A and
note that

1 = lim(detAm) = det(limAm) = detA

by continuity of the determinant.
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Lie algebras

Definition

A Lie algebra is a finite-dimensional vector space g with a map
[·, ·] : g× g→ g such that

1 [·, ·] is linear in both arguments separately

2 [X ,Y ] = −[Y ,X ] for X ,Y ∈ g (skew symmetry)

3 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 for X ,Y ,Z ∈ g (Jacobi
identity)
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sl(n;C) as a Lie algebra

Example

Consider the vector space given by X ∈ Mn(C) for which tr(X ) = 0.
Denote this space by sl(n;C). Then sl(n;C) is a Lie algebra with bracket
[X ,Y ] = XY − YX .

Proof.

For X ,Y ∈ Mn(C), we have

tr(XY ) = tr(YX )

⇒ 0 = tr(XY )− tr(YX ) = tr(XY − YX )

So [X ,Y ] ∈ sl(n;C). We can quickly check bilinearity and skew
symmetry. Verify the Jacobi identity by direct computation.

7 / 24



The Lie group-Lie algebra correspondence

Definition

Take a matrix Lie group G . Then the Lie algebra of G is the set
g := {X | ∀t ∈ R : etX ∈ G}.

The Lie algebra of a Lie group is a linearization of its group action.
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sl(n;C) and SL(n;C)

Claim

sl(n;C) is the Lie algebra of SL(n;C)!

Proof sketch.

Using the exponential of X ∈ Mn(C), defined by

eX =
∞∑

m=0

Xm

m!
,

we can show det(eX ) = etr(X ). So tr(X ) = 0 implies det(etX ) = 1 and
X ∈ sl(n;C). If det(etX ) = et·tr(X ) = 1 for all t, then

tr(X ) =
d

dt
et·tr(X )

∣∣∣∣
t=0

= 0.
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Homomorphisms

Definition

A Lie group homomorphism between matrix Lie groups G ,H is a
continuous group homomorphism between G and H.

Definition

For Lie algebras g, h, a Lie algebra homomorphism is a linear map
φ : g→ h such that φ([X ,Y ]) = [φ(X ), φ(Y )].

Theorem

Given a Lie group homomorphism Φ : G → H, there exists a Lie algebra
homomorphism φ : g→ h such that Φ(eX ) = eφ(X ). It is given by

φ(X ) =
d

dt
Φ(etX )

∣∣∣∣
t=0

.
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Section 2

Representation theory
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Representations

Definition

For a matrix Lie group G , a finite-dimensional representation of G is a
Lie group homomorphism

Π : G → GL(V )

for some finite-dimensional vector space V .

Definition

Take a Lie algebra g. A finite-dimensional representation of g is a Lie
algebra homomorphism

π : g→ gl(V )

for some finite-dimensional vector space V .

Definition

An irreducible representation acting on V is one whose only invariant
subspaces are {0} and V .
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A representation of sl(2;C)

Consider the space Vm of homogeneous, degree-m polynomials in two
complex variables. For X ∈ SL(2;C), take Πm(X ) given by

[Πm(X )f ](z) = f (X−1z) z ∈ C2.

Check by direct computation that Πm(X ) ∈ End(Vm).

Claim

Πm is a representation of SL(2;C).

Proof.

Enough to show Πm is a homomorphism. Take X ,Y ∈ SL(2;C).

Πm(X )[Πm(Y )f ](z) = [Πm(Y )f ](X−1z) = f (Y−1X−1z)

= [Πm(XY )f ](z).
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A representation of sl(2;C) (cont.)

Recall this result:

Theorem

Given a Lie group homomorphism Φ : G → H, there exists a Lie algebra
homomorphism φ : g→ h such that Φ(eX ) = eφ(X ). It is given by

φ(X ) =
d

dt
Φ(etX )

∣∣∣∣
t=0

.

This gives us a representation of sl(2;C)!

[πm(X )f ](z) =
d

dt
f (e−tX z)

∣∣∣∣
t=0

.
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Section 3

Representations of sl(2;C)
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The main result

Theorem

For m ≥ 0, there exists an irreducible representation of sl(2;C) with
dimension m + 1.

Any two irreducible complex representations of sl(2;C) are
isomorphic.

Any irreducible representation of sl(2;C) with dimension m + 1 is
isomorphic to πm.
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An eigenvector lemma

For the remaining slides, we use the following basis of sl(2;C):

X =

[
0 1
0 0

]
Y =

[
0 0
1 0

]
H =

[
1 0
0 −1

]
.

Lemma

Let u be an eigenvector of π(H) with eigenvalue α. Then

π(H)π(X )u = (α + 2)π(X )u

π(H)π(Y )u = (α− 2)π(Y )u.

So either π(X )u is an eigenvector of π(H) with eigenvalue α + 2, or
π(X ) = 0. Analogously for π(Y )u.
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Proof of the lemma

Proof.

X =

[
0 1
0 0

]
Y =

[
0 0
1 0

]
H =

[
1 0
0 −1

]
.

By linearity of π, we write [π(H), π(X )] = π([H,X ]) = 2π(X ). So

π(H)π(X )u − π(X )π(H)u = π([H,X ])u = 2π(X )u

⇒ π(H)π(X )u = π(X )π(H)u + 2π(X )u

= (α + 2)π(X )u.

We argue similarly for π(Y ).
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Proof of the result

Proof of theorem

Take any irreducible representation π of sl(2;C) acting on a
finite-dimensional vector space. Let u be an eigenvector of π(H) with
eigenvalue α ∈ C. Then

π(H)π(X )ku = (α + 2k)π(X )ku.

Pick N ≥ 0 such that

π(X )Nu 6= 0 π(X )N+1u = 0.

Define u0 = π(X )Nu and λ = α + 2N so that π(H)u0 = λu0 and
π(X )u0 = 0.
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Proof of the result (cont.)

Proof of theorem

Also, define uk = π(Y )ku0 for k ≥ 0. Then

π(H)uk = (λ− 2k)uk . (1)

We can check via induction that

π(X )uk = k[λ− (k − 1)]uk−1. (3)

Now pick m ≥ 0 such that

π(Y )ku0 6= 0 ∀k ≤ m π(Y )m+1u0 = 0. (2)

Then
0 = π(X )um+1 = (m + 1)(λ−m)um.

That is, λ = m.
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Proof of the result (cont.)

Proof of theorem

So far, we have
π(H)uk = (λ− 2k)uk (1)

π(Y )ku0 6= 0 ∀k ≤ m π(Y )m+1u0 = 0 (2)

π(X )uk = k[λ− (k − 1)]uk−1. (3)

Equivalently, there exists m such that:

π(H)uk = (m − 2k)uk

π(Y )uk =

{
uk+1 k < m

0 k = m

π(X )uk =

{
k[m − (k − 1)]uk−1 k > 0

0 k = 0.
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Proof of the result (cont.)

Proof of theorem.

span(u0, . . . , um) is invariant under π(H), π(X ), π(Y ), and thus also
π(Z ) for Z ∈ sl(2;C). So span(u0, . . . , um) = V ⇒ dimV = m + 1.

If we define π(H), π(X ), π(H) using the {uk}, we can check that the
resulting π is a representation of sl(2;C).

Hence any irreducible representation with dimension m + 1, including πm,
looks like the one above.

This completes the proof!
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A picture of π

Recall:
π(H)uk = (m − 2k)uk

π(Y )uk =

{
uk+1 k < m

0 k = m

π(X )uk =

{
k[m − (k − 1)]uk−1 k > 0

0 k = 0.

The basis of sl(2;C) acts on the basis of V given by {uk} as such:

u0 u1 u2
· · ·

um−1 um

X

Y Y Y

X X X

Y

H H H H H
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Thank you!
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