Representations of $\mathfrak{s l}(2 ; \mathbb{C})$

Albon Wu
Mentor: Sadie Lipman
University of Michigan

April 2024

Table of Contents

1 Lie groups and Lie algebras

2 Representation theory

3 Representations of $\mathfrak{s l}(2 ; \mathbb{C})$

Section 1

Lie groups and Lie algebras

Matrix Lie groups

Definition

The general linear group over the complex numbers is denoted $G L(n ; \mathbb{C})$ and consists of all invertible $n \times n$ matrices with complex entries.

Definition

A matrix Lie group is a subgroup G of $G L(n ; \mathbb{C})$ such that if A_{m} is a sequence of matrices in G, we have $A_{m} \rightarrow A$ implies $A \in G$.

$S L(2 ; \mathbb{C})$ as a matrix Lie group

Definition

A matrix Lie group is a subgroup G of $G L(n ; \mathbb{C})$ such that if A_{m} is a sequence of matrices in G, we have $A_{m} \rightarrow A$ implies $A \in G$.

Example

The group of 2×2 matrices with entries in \mathbb{C} and determinant 1 , denoted $S L(2 ; \mathbb{C})$, is a matrix Lie group.

Proof.

$S L(2 ; \mathbb{C}) \leq G L(2 ; \mathbb{C})$ is immediate. Now take a sequence $A_{m} \rightarrow A$ and note that

$$
1=\lim \left(\operatorname{det} A_{m}\right)=\operatorname{det}\left(\lim A_{m}\right)=\operatorname{det} A
$$

by continuity of the determinant.

Lie algebras

Definition

A Lie algebra is a finite-dimensional vector space \mathfrak{g} with a map
$[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that
$11[\cdot, \cdot]$ is linear in both arguments separately
$\mathbf{2}[X, Y]=-[Y, X]$ for $X, Y \in \mathfrak{g}$ (skew symmetry)
3 $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ for $X, Y, Z \in \mathfrak{g}$ (Jacobi identity)

$\mathfrak{s l}(n ; \mathbb{C})$ as a Lie algebra

Example

Consider the vector space given by $X \in M_{n}(\mathbb{C})$ for which $\operatorname{tr}(X)=0$. Denote this space by $\mathfrak{s l}(n ; \mathbb{C})$. Then $\mathfrak{s l}(n ; \mathbb{C})$ is a Lie algebra with bracket $[X, Y]=X Y-Y X$.

Proof.

For $X, Y \in M_{n}(\mathbb{C})$, we have

$$
\begin{gathered}
\operatorname{tr}(X Y)=\operatorname{tr}(Y X) \\
\Rightarrow 0=\operatorname{tr}(X Y)-\operatorname{tr}(Y X)=\operatorname{tr}(X Y-Y X)
\end{gathered}
$$

So $[X, Y] \in \mathfrak{s l}(n ; \mathbb{C})$. We can quickly check bilinearity and skew symmetry. Verify the Jacobi identity by direct computation.

The Lie group-Lie algebra correspondence

Definition

Take a matrix Lie group G. Then the Lie algebra of G is the set $\mathfrak{g}:=\left\{X \mid \forall t \in \mathbb{R}: e^{t X} \in G\right\}$.

The Lie algebra of a Lie group is a linearization of its group action.

$\mathfrak{s l}(n ; \mathbb{C})$ and $S L(n ; \mathbb{C})$

Claim

$\mathfrak{s l}(n ; \mathbb{C})$ is the Lie algebra of $S L(n ; \mathbb{C})$!

Proof sketch.

Using the exponential of $X \in M_{n}(\mathbb{C})$, defined by

$$
e^{X}=\sum_{m=0}^{\infty} \frac{X^{m}}{m!},
$$

we can show $\operatorname{det}\left(e^{X}\right)=e^{\operatorname{tr}(X)}$. So $\operatorname{tr}(X)=0$ implies $\operatorname{det}\left(e^{t X}\right)=1$ and $X \in \mathfrak{s l}(n ; \mathbb{C})$. If $\operatorname{det}\left(e^{t X}\right)=e^{t \cdot \operatorname{tr}(X)}=1$ for all t, then

$$
\operatorname{tr}(X)=\left.\frac{d}{d t} e^{t \cdot \operatorname{tr}(X)}\right|_{t=0}=0
$$

Homomorphisms

Definition

A Lie group homomorphism between matrix Lie groups G, H is a continuous group homomorphism between G and H.

Definition

For Lie algebras $\mathfrak{g}, \mathfrak{h}$, a Lie algebra homomorphism is a linear map $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ such that $\phi([X, Y])=[\phi(X), \phi(Y)]$.

Theorem

Given a Lie group homomorphism $\Phi: G \rightarrow H$, there exists a Lie algebra homomorphism $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ such that $\Phi\left(e^{X}\right)=e^{\phi(X)}$. It is given by

$$
\phi(X)=\left.\frac{d}{d t} \Phi\left(e^{t X}\right)\right|_{t=0}
$$

Section 2

Representation theory

Representations

Definition

For a matrix Lie group G, a finite-dimensional representation of G is a Lie group homomorphism

$$
\Pi: G \rightarrow G L(V)
$$

for some finite-dimensional vector space V.

Definition

Take a Lie algebra \mathfrak{g}. A finite-dimensional representation of \mathfrak{g} is a Lie algebra homomorphism

$$
\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)
$$

for some finite-dimensional vector space V.

Definition

An irreducible representation acting on V is one whose only invariant subspaces are $\{0\}$ and V.

A representation of $\mathfrak{s l}(2 ; \mathbb{C})$

Consider the space V_{m} of homogeneous, degree- m polynomials in two complex variables. For $X \in S L(2 ; \mathbb{C})$, take $\Pi_{m}(X)$ given by

$$
\left[\Pi_{m}(X) f\right](z)=f\left(X^{-1} z\right) \quad z \in \mathbb{C}^{2}
$$

Check by direct computation that $\Pi_{m}(X) \in \operatorname{End}\left(V_{m}\right)$.

Claim

Π_{m} is a representation of $S L(2 ; \mathbb{C})$.

Proof.

Enough to show Π_{m} is a homomorphism. Take $X, Y \in S L(2 ; \mathbb{C})$.

$$
\begin{aligned}
\Pi_{m}(X)\left[\Pi_{m}(Y) f\right](z) & =\left[\Pi_{m}(Y) f\right]\left(X^{-1} z\right)=f\left(Y^{-1} X^{-1} z\right) \\
& =\left[\Pi_{m}(X Y) f\right](z)
\end{aligned}
$$

A representation of $\mathfrak{s l}(2 ; \mathbb{C})$ (cont.)

Recall this result:

Theorem

Given a Lie group homomorphism $\Phi: G \rightarrow H$, there exists a Lie algebra homomorphism $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ such that $\Phi\left(e^{X}\right)=e^{\phi(X)}$. It is given by

$$
\phi(X)=\left.\frac{d}{d t} \Phi\left(e^{t X}\right)\right|_{t=0}
$$

This gives us a representation of $\mathfrak{s l}(2 ; \mathbb{C})$!

$$
\left[\pi_{m}(X) f\right](z)=\left.\frac{d}{d t} f\left(e^{-t X} z\right)\right|_{t=0}
$$

Section 3

Representations of $\mathfrak{s l}(2 ; \mathbb{C})$

The main result

Theorem

- For $m \geq 0$, there exists an irreducible representation of $\mathfrak{s l}(2 ; \mathbb{C})$ with dimension $m+1$.
- Any two irreducible complex representations of $\mathfrak{s l}(2 ; \mathbb{C})$ are isomorphic.
- Any irreducible representation of $\mathfrak{s l}(2 ; \mathbb{C})$ with dimension $m+1$ is isomorphic to π_{m}.

An eigenvector lemma

For the remaining slides, we use the following basis of $\mathfrak{s l}(2 ; \mathbb{C})$:

$$
X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad Y=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Lemma

Let u be an eigenvector of $\pi(H)$ with eigenvalue α. Then

$$
\begin{aligned}
\pi(H) \pi(X) u & =(\alpha+2) \pi(X) u \\
\pi(H) \pi(Y) u & =(\alpha-2) \pi(Y) u .
\end{aligned}
$$

So either $\pi(X) u$ is an eigenvector of $\pi(H)$ with eigenvalue $\alpha+2$, or $\pi(X)=0$. Analogously for $\pi(Y) u$.

Proof of the lemma

Proof.

$$
X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad Y=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

By linearity of π, we write $[\pi(H), \pi(X)]=\pi([H, X])=2 \pi(X)$. So

$$
\begin{gathered}
\pi(H) \pi(X) u-\pi(X) \pi(H) u=\pi([H, X]) u=2 \pi(X) u \\
\Rightarrow \pi(H) \pi(X) u=\pi(X) \pi(H) u+2 \pi(X) u \\
=(\alpha+2) \pi(X) u .
\end{gathered}
$$

We argue similarly for $\pi(Y)$.

Proof of the result

Proof of theorem

Take any irreducible representation π of $\mathfrak{s l}(2 ; \mathbb{C})$ acting on a finite-dimensional vector space. Let u be an eigenvector of $\pi(H)$ with eigenvalue $\alpha \in \mathbb{C}$. Then

$$
\pi(H) \pi(X)^{k} u=(\alpha+2 k) \pi(X)^{k} u
$$

Pick $N \geq 0$ such that

$$
\pi(X)^{N} u \neq 0 \quad \pi(X)^{N+1} u=0
$$

Define $u_{0}=\pi(X)^{N} u$ and $\lambda=\alpha+2 N$ so that $\pi(H) u_{0}=\lambda u_{0}$ and $\pi(X) u_{0}=0$.

Proof of the result (cont.)

Proof of theorem

Also, define $u_{k}=\pi(Y)^{k} u_{0}$ for $k \geq 0$. Then

$$
\begin{equation*}
\pi(H) u_{k}=(\lambda-2 k) u_{k} . \tag{1}
\end{equation*}
$$

We can check via induction that

$$
\begin{equation*}
\pi(X) u_{k}=k[\lambda-(k-1)] u_{k-1} . \tag{3}
\end{equation*}
$$

Now pick $m \geq 0$ such that

$$
\begin{equation*}
\pi(Y)^{k} u_{0} \neq 0 \forall k \leq m \quad \pi(Y)^{m+1} u_{0}=0 \tag{2}
\end{equation*}
$$

Then

$$
0=\pi(X) u_{m+1}=(m+1)(\lambda-m) u_{m} .
$$

That is, $\lambda=m$.

Proof of the result (cont.)

Proof of theorem

So far, we have

$$
\begin{gather*}
\pi(H) u_{k}=(\lambda-2 k) u_{k} \tag{1}\\
\pi(Y)^{k} u_{0} \neq 0 \forall k \leq m \quad \pi(Y)^{m+1} u_{0}=0 \tag{2}\\
\pi(X) u_{k}=k[\lambda-(k-1)] u_{k-1} . \tag{3}
\end{gather*}
$$

Equivalently, there exists m such that:

$$
\begin{gathered}
\pi(H) u_{k}=(m-2 k) u_{k} \\
\pi(Y) u_{k}= \begin{cases}u_{k+1} & k<m \\
0 & k=m\end{cases} \\
\pi(X) u_{k}= \begin{cases}k[m-(k-1)] u_{k-1} & k>0 \\
0 & k=0 .\end{cases}
\end{gathered}
$$

Proof of the result (cont.)

Proof of theorem.

$\operatorname{span}\left(u_{0}, \ldots, u_{m}\right)$ is invariant under $\pi(H), \pi(X), \pi(Y)$, and thus also $\pi(Z)$ for $Z \in \mathfrak{s l}(2 ; \mathbb{C})$. So $\operatorname{span}\left(u_{0}, \ldots, u_{m}\right)=V \Rightarrow \operatorname{dim} V=m+1$.

If we define $\pi(H), \pi(X), \pi(H)$ using the $\left\{u_{k}\right\}$, we can check that the resulting π is a representation of $\mathfrak{s l}(2 ; \mathbb{C})$.

Hence any irreducible representation with dimension $m+1$, including π_{m}, looks like the one above.

This completes the proof!

A picture of π

Recall:

$$
\begin{gathered}
\pi(H) u_{k}=(m-2 k) u_{k} \\
\pi(Y) u_{k}= \begin{cases}u_{k+1} & k<m \\
0 & k=m\end{cases} \\
\pi(X) u_{k}= \begin{cases}k[m-(k-1)] u_{k-1} & k>0 \\
0 & k=0 .\end{cases}
\end{gathered}
$$

The basis of $\mathfrak{s l}(2 ; \mathbb{C})$ acts on the basis of V given by $\left\{u_{k}\right\}$ as such:

Thank you!

